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ABSTRACT 
It is well-known that online services resort to various cookies to 
track users through users’ online service identifers (IDs) – in other 
words, when users access online services, various “fngerprints” are 
left behind in the cyberspace. As they roam around in the physical 
world while accessing online services via mobile devices, users 
also leave a series of “footprints” – i.e., hints about their physical 
locations – in the physical world. This poses a potent new threat 
to user privacy: one can potentially correlate the “fngerprints” 
left by the users in the cyberspace with “footprints” left in the 
physical world to infer and reveal leakage of user physical world 
privacy, such as frequent user locations or mobility trajectories in 
the physical world – we refer to this problem as user physical world 
privacy leakage via user cyberspace privacy leakage. In this paper we 
address the following fundamental question: what kind – and how 
much – of user physical world privacy might be leaked if we could 
get hold of such diverse network datasets even without any physical 
location information. In order to conduct an in-depth investigation 
of these questions, we utilize the network data collected via a DPI 
system at the routers within one of the largest Internet operator 
in Shanghai, China over a duration of one month. We decompose 
the fundamental question into the three problems: i) linkage of 
various online user IDs belonging to the same person via mobility 
pattern mining; ii) physical location classifcation via aggregate 
user mobility patterns over time; and iii) tracking user physical 
mobility. By developing novel and efective methods for solving 
each of these problems, we demonstrate that the question of user 
physical world privacy leakage via user cyberspace privacy leakage 
is not hypothetical, but indeed poses a real potent threat to user 
privacy. 
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1 INTRODUCTION 
Smart phones and other mobile devices have made it easy for users 
to access various online services nearly everywhere and at any 
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time – literally with a few touches of fngertip – whether on the go, 
at home, school or work. Online services such as social networks, 
messaging apps or e-commerce sites typically require users to create 
online user identifers (IDs) to login and access their services. Due 
to the stateless nature of the HTTP protocol, it is well known that 
HTTP requests and responses often contain cookies as part of 
the HTTP headers that embed user online ID information. This is 
despite the fact that the HTTP payload itself may be encrypted. 
Hence in this sense, users leave a variety of “fngerprints” in the 
cyber world. Previous studies have shown a wide range of highly 
sensitive personal attributes and information such as age, gender, 
photos, friends, sexual orientation, ethnicity, religious and political 
views, hobbies, activities, even emotions, can be culled from online 
social network profles and activities [18, 21], and correlated and 
inferred – especially coupled with network trafc – to build a 
mosaic of various personal traits and activities [43]. 

As they roam around in the physical world while accessing 
online services, users also leave a series of “footprints” – i.e., hints 
about their physical locations – in the physical world. This poses a 
potent new threat to user privacy – leakage of user physical world 
privacy: one can potentially correlate the “fngerprints” left by the 
users in the cyberspace with “footprints” left in the physical world to 
infer and reveal information about users in physical world, such as 
frequent user locations or mobility trajectories in the physical world! 
To demonstrate that this problem of user physical world privacy 
leakage via user cyberspace privacy leakage is plausible, we make the 
weakest assumption about the (physical) location information: we 
simply assume that we have access to a (diverse) collection of deep 
packet inspection (DPI) data of a number of broadband subscribers, 
each of which is associated with a physical location (of certain 
geographical resolution), e.g., a WiFi access point, or a broadband 
interface; but we do not have information regarding the nature of 
the physical location (e.g., whether they are residential, business or 
downtown commercial districts), not to mention the GPS location 
coordinates. We further assume that each network data record (e.g., 
an HTTP session) are time-stamped, and the collection of network 
datasets has a large geographical span as well as temporal span 
that cover the mobility and other physical activities of a signifcant 
portion of users. Users can employ multiple and diferent online user 
IDs to access online services – these are the so-called cyberspace 
fngerprints; here we assume that we do not know the true user 
identity – e.g., the mobile phone number or the device ID – behind 
these online user IDs. The fundamental question we are interested 
in answering is: what kind – and how much – of user physical world 
information might be leaked if we could get hold of such diverse 
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network datasets even without any physical location information; or 
is this concern merely hypothetical? 

Given the above assumptions, we decompose this question of user 
physical world privacy leakage via user cyberspace privacy leakage 
into three sub-problems: i) Is it possible to link various online 
service IDs belonging to the same user together, using only mobility 
patterns of users across multiple locations over time, but without 
the precise location information? Here a key insight is that users’ 
daily mobility patterns are fairly predictable, e.g., two frequent 
locations are home and work/school, as several previous studies 
have shown [32, 41]. Hence the question becomes whether such 
predictability can be exploited to link together various user online 
IDs. ii) Assuming that we could link together various online user IDs 
of a signifcant portion of users, could we then use such information 
to classify the physical locations that users are associated with, 
such as residential, business, entertainment, etc.? Here the intuition 
is that the time, frequency and duration that various users visit 
a location can reveal the nature of a location or provide other 
contextual information about a location. For example, very few 
people will frequent a shopping mall in the dead of a night; whereas 
a location that are associated with many people throughout the 
evening and night would likely be a residential place. Lastly, iii) with 
answers to i) and ii), we would like to develop an efective method 
to piece together and track users’ physical world trajectories and 
activities. 

We remark that many of today’s Internet service providers (ISPs) 
collect and store various sources of network trafc data for legit-
imate business reasons (e.g., for service billing, network manage-
ment, trafc engineering and performance monitoring). It therefore 
is possible that stored network trafc data might be hacked and 
stolen, despite the fact that location information might have been 
encrypted, anonymized or removed. This is not notwithstanding 
that a powerful third party, e.g., a crime syndicate, a rogue em-
ployee of an Internet operator or a state agent of an authoritarian 
government, or any other “big brother” entities, could possibly 
directly tap into the wire or force an ISP to surrender (e.g., via 
subpoena) to get access to such data. In this case, the physical loca-
tions might even be available to the third party, yielding a simpler 
version of the problem that what we try to address in this paper; 
in other words, the sub-problem ii) becomes trivial, when exaction 
location information is available. From the perspective of network 
measurement, the problem we attempt in this paper is also highly 
relevant: an afrmative answer to the fundamental question posed 
above suggests that merely encrypted or anonymized user id (e.g., 
phone numbers) and location information (e.g., GPS coordinates) 
associated with network datasets is insufcient – not only user 
cyberspace privacy but also the user physical world privacy could 
be mined and inferred, thus leaked. 

In order to conduct an in-depth investigation of these questions, 
we utilize the network trafc data collected via a DPI system at the 
routers within one of the largest Internet operators in Shanghai, 
China over a duration of one month. Only cookies in the HTTP 
header trafc which contain users’ online service IDs during the 
online login process are collected and used in our study (see Section 
2 for more details)– no payload or other personally identifable 
information is collected. For scalability, we also limit ourselves with 
only the user online IDs of three popular online services in China, 

Figure 1: Framework for extracting cookies from packets. 

namely, QQ (online instant messenger), Weibo (online social network), 
Tmall and Taobao (online shopping sites). A total of 470 million 
records containing 28.0 million distinct user IDs and spanning 
nearly the whole city are used in our study. 

The contributions of our study are summarized below: 
• We develop a user detection system to discover users’ identifes 
in multiple cyberspace by utilizing the spatio-temporal locality. 
By checking against the ground-truth data, we validate that our 
algorithm achieves high accuracy with F1-score over 0.75. 

• We develop a location-classifcation system that is able to divide 
millions of locations into three types: residential, business and 
entertainment. Our results achieve F1-score of 0.78 and highly 
coincide with the POI distribution, indicating the efectivity of 
our system. 

• We systematically analyze the obtained all-round mobility tra-
jectories with physical context of over 10 million users, and 
reveal their main privacy leakage in terms of time, locations 
and services. 
The remainder of the paper is structured as follows. In Section 2, 

we describe collection and processing of the datasets used in our 
study. In Section 3, we motivate and provide a high-level overview 
of our proposed system. In Section 4, we develop a probabilistic 
approach using Gauss-Markov human mobility model to detect 
the online IDs for each user. In Section 5, we devise a location-
classifcation system based on the location entropy. By combining 
the user mobility trajectories and physical context, in Section 6 
we demonstrate that the user physical privacy can be revealed via 
cyber privacy leakage. After discussing related work in Section 7, 
we summarize our main fndings in Section 8. 

2 DATA COLLECTION AND PROCESSING 
The datasets used in our study were collected from the core routers 
of a major Internet service provider (ISP) in Shanghai, China. They 
are obtained through the two processes: extracting the cookie data 
from the DPI system, and culling user IDs from the cookies. 

The diagram of the frst process is shown in Figure 1. Each 
subscriber can access the Internet via a broadband Internet con-
nection at home or through various WiFi access points deployed 
by the ISP across the city. By deploying network monitoring and 
packet capture tools on the core routers of the ISP, we extract cook-
ies generated by users. In addition, the ISP maintains a separate 
(billing) database, namely, the identifcation of each broadband sub-
scriber, which can tell us where each HTTP session is generated. 
Combining these two data sources, we can correlate cookies ex-
tracted from the data packets with the corresponding broadband 
subscribers. One issue is that cookies in HTTPS session cannot 
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Figure 2: Framework of the user tracking system. 

be obtained. However, only 14% of packets in China use HTTPS 
[1], which indicates the overwhelming majority of users’ cookies 
can be extracted from HTTP packets. On the other hand, though 
the datasets used in our study are collected by the ISP, the ISP is 
not the only possible attacker, since the cyberspace fngerprints of 
users is a ubiquitous content and can be easily obtained by diferent 
attackers. A company-level attacker, e.g., a service provider, can 
infer users’ locations through packets uploaded by the applications 
installed in the their mobile phones. An individual attacker can 
also infer users’ locations through crawling their publicly available 
online check-ins. However, the datasets collected by ISP give us the 
most comprehensive view of this kind of privacy leakage. Thus, we 
mainly focus on this dataset in our study. 

The second step is to cull user IDs from the cookies. It has been 
discovered that although cookies are often opaque strings with 
hidden semantics known only to the party setting the cookie, they 
may include visible identity information[22]. Inspired by this idea, 
we turn on the Chrome Developer Tools [13] and displays HTTP 
request/response headers containing cookies we need. Take the re-
quest header shown in Figure 3 as an example. It is generated when 
a user wants to login the Weibo account through www.weibo.com. 
Fields such as Accept and User-Agent have been ignored for sim-
plicity. As we can observe, the ID is involved in the Path feld, 
i.e., “<User ID>” in this request. By performing regular expres-
sions matching to these cookies, we obtain account IDs of users for 
diferent online services. In more detail, we list the regular expres-
sions used to extract online IDs and related examples in Table 1. As 
mentioned in the introduction, our study focuses on three repre-
sentative online services in China. All of them are the leading and 
most popular ones among the corresponding categories in China. 

By snifng the trafc of millions of broadband subscribers, we 
capture the login actions when users access these services. The 
data collection was from Nov. 1 to Nov. 30, 2015, involving over 3.4 
million broadband subscribers and 28.0 million online IDs. There 
are 470 million entries in our dataset. Each entry contains follow-
ing felds: name of the online service, online ID, identity of the 
broadband subscriber, and login time. Take <Weibo, 123456, 789, 
2015112113> as an example. It records a user with ID 123456 logs in 
Weibo at 1PM Nov. 21, 2015, and the identity of the subscriber is 789. 
The large-scale datasets guarantee the credibility of our analyses. 

Figure 3: A cookie of online services for example. 

GET /u/<User ID>/home?wvr=5 HTTP/1.1 
Host: www.weibo.com 

Cookie: SUS=SID-<User ID>-1462809518-GZ-kegic-9be6 
28ae4bc14c92b0ee9200543cc7f8 

To preserve user privacy, the online ID and subscriber identity in 
our datasets and aforementioned cookies are all anonymized. The 
real online ID and subscriber identity are never made available to, 
or utilized by us. In addition, there is also no payload collected in 
the dataset. The usage of the datasets is authorized by the ISP. 

3 SYSTEM OVERVIEW AND ROADMAP 
Culling user online IDs from the cookies, we obtain the login records 
of massive online IDs with the corresponding time and locations 
as shown in Figure 2(a). Our goal is to reveal privacy leakage for 
physical users based on them. However, it is not a trivial task in 
terms of three major challenges. First, users’ multiple identifers 
are extracted without cross linking, while it is quite normal for a 
physical user to have multiple IDs of diferent services. Second, we 
have known few background or context about physical locations, 
which are critically important for inferring the privacy leakage of 
the physical world mobility. Last but not the least, how can we infer 
the privacy leakage from the physical world footprint is the third 
challenge. To meet these challenges, we design our system with 
three modules as shown in Figure 2, which are discussed as follows. 

In order to uncover physical world privacy leakage as much as 
possible from cyberspace cookie records of users, a basic question 
must be answered, namely which online IDs belong to the same 
users? In physical world, it is quite normal for an individual user 
to have multiple IDs for diferent online services. Trajectory of a 
single online ID is only a subset of mobility records left by its user, 
and thus we cannot only completely reveal the potential privacy 
leakage of users only based on their single online ID. Thus, in 
order to obtain the bound of users’ privacy leakage from their login 
records, we must link all the online IDs for each user together to 
obtain the universal set of its mobility records. Thus, as shown in 
Figure 2(b), the frst module of our system is to link all the online 
IDs belonging to each user, which is discussed in detail in Section 4. 

On the other hand, physical context can provide rich information 
about users’ behavior. For example, given the physical context, we 
can infer what people are doing through where users are located 
in physical world. Further, we can infer what people are going to 
do through where users are moving to. Through these behaviors, 
more privacy of users is exposed. Meanwhile, locations of places 
Table 1: Service types and regular expressions to match IDs. 

Services Type Website RegExp Example 

QQ 
Instant messengers 
(IM) qq.com 

pt2gguin=o(\d+) 
o_cookie=(\d+) 

pt2gguin= 
o<User ID> 

Taobao E-commerce (EC) tmall.com 
taobao.com 

lgc=(\w+) 
cna=(\w+) 

lgc= 
<User ID> 

Weibo 
Online social 
networks (OSN) weibo.com 

SID-(\w+) 
fd%(\w+) 

SUS=SID-
<User ID> 

www.weibo.com
www.weibo.com
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Figure 4: Distribution of distance between users’ login 
records of adjacent hours. 

such as home and ofce are also critically important privacies for 
users. Thus, as shown in Figure 2(c), we investigate the physical 
context of each location in the second module of our system, and 
this module will be discussed in detail in Section 5. 

Finally, by combining the all-round login records and physical 
context, we can thoroughly analyze the trajectories of users, and 
reveal the main privacy leakages. These are discussed in Section 6. 

4 PHYSICAL WORLD USER DETECTION 
In our system, we do not know the true user identity – e.g. the 
device ID – behind these online user IDs. In fact, in the routers of 
the backbone network, we have no user identifcation information. 
Thus, the extracted users’ multiple online IDs are not linked to-
gether, while it is quite normal for a physical user to have multiple 
IDs. In order to characterize users’ privacy leakage in a compre-
hensive way, users’ multiple IDs should be linked together to be 
analyzed. On the other hand, users’ daily mobility patterns have 
been discovered to be fairly predictable [32, 41]. Inspired by this 
idea, we propose an algorithm which maximizes the likelihood 
of observed login records of online IDs based on Gauss-Markov 
human mobility model to solve this problem. 

4.1 Model and Problem Formulation 
We frst propose a mathematical model and formulation for the 
problem. Let A represent the set of all online IDs in our dataset, 
and let 2A denote the power set of A, i.e., the set of all subsets of 
A. Given any online ID a ∈ A, we defne its mobility records as 
Ra = {(l1, t1), (l2, t2), ...}, where (li , ti ) represents a login record in 
location li at time slot ti that was traced by cookie. Moreover, for 
a cluster of online IDs U , we defne their mobility records RU = 
{Ra |a ∈ U }. Then RA = {Ra |a ∈ A} represents the set of mobility 
records of all online IDs. Let t (a) ∈ T denote the type of online ID 
a ∈ A, where T={IM, OSN, EC} is set of all online ID types. 

Defnition 1 (Partition of A) Let p = {U1,U2, ...,Un }, where 
∀k = 1, ..., n, Uk ∈ 2A. We further defne p as a partition of A if 
following four conditions hold: (1) ∅ < p, (2) ∪U ∈pU = A, (3) if 
U1, U2 ∈ p, and U1 , U2, then U1 ∩ U2 = ∅, and (4) ∀U ∈ p, if a1, 
a2 ∈ U , then t (a1) , t (a2). 

Traditional defnition of partition only needs three conditions 
(1)∼(3) hold. In our case, we use the defnition of partition to repre-
sent a user detection result, where each set U in partition p repre-
sents all online IDs belonging to one physical user. Thus, we add 
the condition (4) to limit that each set in a partition has at most one 
ID of each type. In addition, we defne P as the set of all partitions. 

Assume there is no shared online ID among diferent users. Then, 
there is an inherent partition of A composed of the true set of online 

IDs for each user denoted as ptrue. Our problem, i.e., detecting all 
online IDs of each user, can be transformed to fnding a partition p
for A that are closed to ptrue as much as possible. However, in most 
cases, we only need to detect online IDs for a part of users, or even 
one user. Thus, by using the target online IDs as the identifcations 
of our target “users”, the problem is transformed to: for a list of 
online IDs {ai }k 

=1, detecting all other online IDs belonging to the i
same user with them. That is, fnd a partition p, where elements 
involving {ai }k 

=1 approaches to elements involving {ai }k 
=1 in ptruei i

as close as possible. 
In order to formally analyze our problem, it is necessary to build 

a mobility model which describes how users move and produce 
login records. To obtain the mobility model, we plot the cumulative 
distribution function (CDF) and probability distribution function 
(PDF) of the distance between login records of adjacent hours for 
all IDs in Figure 4(a) and (b), respectively. By ftting analysis, we 
fnd the empirical distribution can be approximated well by a Gauss 
distribution with σ = 21.43, with the average R-squared statis-
tics of 99.85%. Thus, the mobility distance of users can be well 
approximated by a Gaussian stochastic variable. 

Inspired by this observation, we assume the movement of users 
follows the Gauss-Markov model, i.e., the location of one user in the 
next time slot only depends on its current location, and the moving 
distance follows a Gaussian distribution. Then, the conditional 
probability of a login record given its time-adjacent login record 
can be calculated as follows, 

1 d2 (l1, l2)
p ((l2, t + 1) |(l1, t )) = √ exp(− ),

2σ 22πσ 2 

Then, using Markov property, we can obtain the distribution of 
location between ∆t hours as follows, 

1 d2 (l1, l2)
p ((l2, t + ∆t ) |(l1, t )) = √ exp(− ). 

2π ∆tσ 2 2∆tσ 2 

Without loss of generality, for a user’s mobility records R = {(l1, t1) 
, (l2, t2 ), ..., (ln , tn )} with t1<t2<...<tn , its probability can be com-
puted as: 

nY−1 ∆d21 i p (R) = p exp ( (1)
2π ∆ti σ 2 ), 

i=1 2π ∆ti σ 2 

where ∆di = d (li+1, li ) and ∆ti = ti+1 − ti . 
Intuitively, if IDs belonging to diferent users are linked by mis-

take, their merged trajectory is unreasonable, e.g., there may exist 
very large distance gap ∆d between records of very small time gap 
∆t , leading to a small probability. Then, based on this model, we 
can make a Bayesian inference about the relationship of IDs. 

4.2 Detection Method 
The true partition ptrue can be approximated by the partition p that 
maximizes the posterior probability of 

pD = argmaxp ∈P P (p |RA). 
By applying Bayes’ theorem to it, we can obtain: 

P (RA |p)P (p)
P (p |RA) = . 

P (RA)
In terms of P (RA |p), we assume the login records are produced 
independently by diferent users. Thus we haveY 

P (RA |p) = P (RU |U ),
U ∈p 

where P (RU |U ) is the probability that the mobility records in RU 

occur under the condition that they belong to the same user. Under 



the proposed mobility model, this probability can be computed 
by applying (1) to the merged mobility records of the user, R = S 
a ∈U R

a . In addition, we further assume that prior QP (p) is only 
dependent on the online IDs of each user, i.e., P (p) = U ∈p P (U ). 
Then, we have: Y 

P (p |RA) ∝ P (RU |U )P (U ).
U ∈p

We further assume users own each type of online ID independently 
with Bernoulli distribution with probability θt for t ∈ T. That is, 
P (U ) = 

Q It (U )
(1 − θt ) (1−It (U )) , where It (U ) is the indicator t ∈T θt 

function of whether U contains online ID of type t . 
However, the computation time of fnding a partition of the over 

30 million online IDs over a modern metropolis as Shanghai that 
maximizes the posterior probability is intolerable for us. Since it 
is NP-hard, even fnding an optimal partition for a subset of A is 
intractable. Thus, we alternatively compute the set of online IDs U 
which maximizes the local likelihood of the target online ID in a 
greedy way, which is described in detail in Algorithm 1. It starts 
from the target online ID as the initial node of the target cluster C . 
Then, it works in an iterative way to discover prospective nodes 
belonging to the same physical user. In each iteration round, among 
all nodes in A, it picks the node with the maximum increase to 
the local log likelihood by involving it to the current cluster C , in 
which the local log likelihood is defned as: 

q(C ) = logP (RC |C )P (C ). 
Then, the change of the local log likelihood by involving ID a, 
denoted by ∆q(C, a), can be calculated as follows, 

∆q(C, a) = q(C ∪ a) − q(C ) − q(a). 
After that, the algorithm updates the target cluster by adding the 
picked node, and continues to select another node. This process is 
repeated until no increase of the local log likelihood can occur, and 
C is outputted as the detected result. 

4.3 Performance Evaluation 
To evaluate the accuracy of our proposed user detection algorithm, 
we need some ground-truth data for the validation. By a question-
naire survey, ISP obtained all online IDs of about 3000 users. The 
results are encrypted with the same encryption function as the DPI 
data by the ISP, and thus they can be matched with each other. We 
use this data as the ground truth in our study. For each user, we 
pick up one ID for a selected service type as the initial node, and 
use our algorithm to detect all IDs belonging to this user. After 
obtaining a set of IDs, we compare it with the ground-truth data 
by looking at other types of IDs. 

We compare our algorithm with other two state-of-the-art ap-
proaches, which are described as follows: 

Algorithm 1: Algorithm 1 

Input: The set of IDs A, the type t (v ) ∈ T for all IDs v ∈ A, 
and an initial online ID u0. 

Output: C , the cluster of IDs belonging to same user. 
Initialize: C ← {u0};TC ← T; 
while maxu ∈A\C ∆q(C,u) > 0 and TC , ∅ do 

umax = argmaxu ∈A\C ∆q(C,u); 
C = C ∪ {umax}; 
TC = TC \{t (umax)}. 
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Figure 5: Performance of diferent solutions. 

Poisson-based approach: Riederer et al. [34] assume visit of each 
user to a place follows the Poisson distribution, and an action (e.g. 
login) of each service occurs independently with the Bernoulli 
distribution. Based on this mobility model, they compute a score 
for every candidate pair of online IDs. Then, they fnd the maximum 
weighted matching of online IDs as the results. 
Frequency-based approach: Rossi et al. [35] use the frequency of 
login to approximate the probability of visit, which is represented 

Nl
U +αas: P (l |RU ) = P . NU is the number of login records of 

l ∈L N U +α |L | l
l

user (online ID) U at location l . In addition, α>0 is the smoothing 
parameter and |L| is the number of locations in the dataset, which 
are used to eliminate zero probabilities. Their target is to fnd online 
ID a maximizing the probability 

Q 
(l,t ) ∈Ra P (l |RU ). 

There are some tunable parameters, σ and θt , in our model that 
both have physical meaning and can be estimated directly from the 
ground truth. Thus, we evaluate the performance of our algorithm 
by 3-fold cross-validation. That is, we split our ground truth into 
three equal sets, and use each two sets to estimate the parameters, 
and evaluate the performance of the algorithm to the left set under 
the obtained parameters. 

We use three key metrics in binary classifcation to quantify the 
detection accuracy, i.e., precision, recall, and F1-score[31]. Specif-
cally in our problem, precision is defned as the fraction of online 
IDs detected by our algorithm that are included in the ground-
truth data, and recall is defned as the fraction of online IDs in 
the ground-truth data that are successfully retrieved. F1-score is 
the harmonic mean of precision and recall, which is defned as 

2·precision·recall 
F1 = precision+recall . The results are shown in Figure 5 and Figure 6. 

In Figure 5, we compare the performance of our proposed algo-
rithm with the two state-of-the-art algorithms. Figure 5(a) shows 
the precision-recall plots with time granularity of 1, 2 and 3 hours 
respectively. From the result, we can observe that the time granular-
ity does not infuence the performance of our proposed algorithm, 
while it has larger infuence on the performance of the other two 
approaches. In addition, we present the best precision, recall and 
F1-score in Figure 5(b). It shows that our algorithm outperforms 
others in terms of all metrics. Specifcally, the best F1-score of our 
algorithm is over 0.75, improving 0.07 and 0.20 compared with two 
state-of-art algorithms, respectively. 

In Figure 6, we evaluate our algorithm with diferent types of 
online IDs. Figure 6(a) shows the performance with diferent types 
of intial IDs, in which the F1-score is evaluated as the function of 
the number of login records of the target users. As we can observe, 
users with more login records can be detected with higher accu-
racy, especially for users with records less than 20. When there are 
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Figure 6: Performance of diferent types of IDs. 

80 or more records, the F1-score turns to be stable. On the other 
hand, as for the overall performance, user detection with initial 
IDs of EC shows better performance with stable F1-score above 
0.73, while that of OSN shows the worse performance, with stable 
F1-score of 0.46. From another point of view, we fx the initial IDs 
to be EC accounts, and study the performance of the detection 
to other types of online IDs. As we can observe from Figure 6(b), 
detection to all types of online IDs shows F1-score larger than 0.8. 
Another interesting observation is that performance of OSN ac-
counts, in turn, shows the better performance. The main reason 
is users’ diferent behavior for using diferent types of online IDs. 
For example, people tend to use their EC accounts in more private 
places such as home, while they tend to use their OSN accounts 
more in public places. Thus, more information about the user can 
be obtained by investigating their OSN accounts, leading to the 
better performance. 

Overall, in order to detect all online IDs belonging to the same 
user, we propose a user detection algorithm of optimizing the local 
likelihood under Gauss-Markov human mobility. Results show that 
our solution achieves good performance. That is, the overall F1-
score is about 0.75, and for IM and EC account, the F1-score can 
reach 0.85. 

5 LOCATION CLASSIFICATION 
In order to characterize the physical-world behaviors of users, we 
need to infer the types of the locations that online IDs login. On 
the other hand, since in our system the subscriber identity is en-
crypted, and the associated location information is insufcient, we 
cannot obtain their types directly through API provided by map ser-
vices. Thus, we develop a location-classifcation system that labels 
locations with diferent types based on aggregate user behavior. 

5.1 Distinguishing Residential and 
Non-Residential Locations 

From the subscribers’ registration information, we obtain 10,000 
locations with type of residential or non-residential. We use them 
as training set, which enables us to utilize supervised learning 
algorithm to distinguish residential or non-residential locations. 

Table 2: Precision and recall for distinguishing residential 
and non-residential locations 

Algorithm 
Residential Non-residential 

Prec. Recall F1 Prec. Recall F1 
LR 0.92 0.97 0.94 0.79 0.58 0.67 
SVM 0.97 0.91 0.94 0.66 0.88 0.75 
RF 0.95 0.95 0.95 0.78 0.78 0.78 
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Figure 7: Distribution of features for residential and non-
residential locations. 

Through detailedly investigating the character of residential and 
non-residential locations, we select four features, i.e., the number of 
online IDs Nu (L), the number of login records Nl (L), the location 
entropy E (L), and the day-night login frequency ratio Rd (L) to 
distinguish residential and non-residential locations, of which the 
distributions are shown in Figure 7. 

As we can observe from Figure 7(a) and (b), non-residential lo-
cations have much more login records and appeared online IDs 
compared with residential locations, which coincides with our em-
pirical knowledge. On the other hand, from Figure 7(c), we can 
observe that the temporal distributions of login records in these 
two types of locations show much diference. Specifcally, non-
residential locations have more login records from 8AM to 6PM 
(working time), while residential locations have more login records 
from 6PM to 0AM (leisure time). Thus, we use the ratio of the login 
number in these two time periods as the feature. Another impor-
tant feature is the entropy. For a location L, its entropy E (L) can be 
calculated by E (L) = − 

P 
PL (u)logPL (u), in which UL is the u ∈UL 

set of online IDs appeared in L, and PL (u) is the probability of any 
online ID appeared in L is u. It have been found that places such 
as the university campus, shopping and dining districts, have high 
entropy, while residential areas have low entropy [4]. In fact, we 
plot the distribution of entropy of diferent types of locations in 
Figure 7(d). As we can observe, non-residential locations have much 
larger entropy compared with residential locations, indicating its 
efectiveness in distinguishing two types of locations. Overall, all 
these features we select show much diference between two types 
of locations. Thus, we use them in our classifer to distinguish 
residential and non-residential locations. 

Using these features above, we apply three mainstream super-
vised learning algorithms, i.e., logistic regression (LR), support 
vector machine (SVM), random forest (RF) [30]. Specifcally, logistic 
regression is a generalized linear model. Compared with it, SVMs 
can efciently perform a non-linear classifcation using what is 
called the kernel trick, implicitly mapping their inputs into high-
dimensional feature spaces [40]. Random forest is an ensemble 
learning method that operates by constructing and combining a 
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Figure 8: Distribution of features for business and entertain-
ment locations. 

multitude of weak learners with random subset of the features and 
training set. Due to the randomness and ensemble, it can better 
deal with redundant features. 

We make a 10-fold cross-validation on the ground truth data, 
and show the results in Table 2. As we can observe, random forest 
algorithm has the best performance with F1-score of 0.78 for non-
residential locations and 0.95 for residential locations. The results 
validate the feasibility and correctness of the selected features. 

Overall, by elaborately selecting 4 features and the best classifer 
among three mainstream supervised learning algorithms, we divide 
millions of locations into residential and non-residential types. 

5.2 Clustering Non-Residential Locations 
We further investigate location types among non-residential lo-
cations. Since we do not have ground truth information about 
non-residential locations, instead of supervised learning method, 
we choose to use an unsupervised learning method. 

As discussed before, entropy plays an important role in distin-
guishing diferent types of locations. Thus, we further investigate 
entropy in temporal dimension. Specifcally, we use the entropy 
of one location of the duration from one day to the whole 30 day 
as a 30 dimensional vector, and then get the diference between 
adjacent elements, which is referred to as the entropy diference, 
and defned as follow: 

Di (L) = Ei (L) − Ei−1 (L), 
where Ei (L) is the entropy of location L during the frst i days, and 
E0 (L) is set to be 0. Intuitively, the entropy diference can describe 
the diference of appeared IDs between adjacent days. Using it as a 
feature and applying clustering algorithm, we divide non-residential 
locations with stable and unstable appeared IDs into two clusters. 

The distribution of entropy diference for the two clusters is 
shown in Figure 8(a). As we can observe, the entropy diference 
of the frst cluster reduces fast, which indicates the appeared IDs 
are stable. In addition, it shows a periodic variation with a cycle of 
one week, indicating periodicity of users. As for the other cluster 
of location, its entropy diference remains high throughout the 
month, indicating the appeared online IDs are unstable. Then in 
Figure 8(b), we plot login number of diferent days in one week. 
As we can observe, there are more login records at weekdays for 
locations in the frst cluster. As for the second cluster, there are more 

Table 3: Normalized POI distribution around subscribers. 
Cluster 

POI Business Entertainment 

Ofce Building 1.5634 0.9574 
Factory 1.0435 0.4534 
Restaurant 0.5635 1.3765 
Hotel 0.4657 1.0343 

Figure 9: Trajectory for example, in which red line indicates 
the complete trajectory of all online IDs, and line with other 
colors indicates trajectory of some single online ID. 

login records at weekends than those at weekdays. By combining 
results from these two fgures, we label the frst cluster as business 
locations, and the second cluster as entertainment locations. 

To validate our conjecture that locations in the two clusters are 
corresponding to business and entertainment locations, we study 
the POI distribution around these locations. POI is a specifc point 
location of a certain function such as restaurant or shopping mall. 
An area’s POI distribution can refect its function. Specifcally, we 
study the four types of POI within 200m of locations in the two 
clusters, and show their average normalized value in Table 3. To be 
better compared with, the number of POI is normalized by the mean 
value of the corresponding type. As we can observe, the number 
of business POI, ofce Building and factory, around locations of 
the frst cluster are much higher than that of the second one, while 
the number of entertainment POI, restaurant and hotel, around 
locations in the second cluster have larger values, indicating the 
correctness of our conjecture. Thus, we conclude the two clusters 
of locations to be business locations and entertainment locations. 

Overall, by using the location entropy as the main feature and 
applying both supervised and unsupervised learning, we are able 
to successfully divide locations into three types, i.e., residential, 
business and entertainment location. These three types of locations 
have covered most places where people access the Internet all 
around the city. 

6 USER PRIVACY ANALYSIS 
Having linked the online IDs belonging to the same user, we are 
able to derive the complete trajectories of physical users. Moreover, 
we can infer the physical context of locations from the behavior 
of online IDs around them, which provides rich information about 
users’ behavior. By combining the mobility trajectories and physical 
context, in this section we provide a thorough analysis of user 
physical world privacy leakage via cyberspace. We frst provide 
basic analysis about the obtained user trajectories in terms of quality. 
Then, we focus on the privacy bound, i.e., the uniqueness of our 
obtained trajectories. 

6.1 Quality of Users’ Trajectories
We now present some basic analysis about users’ trajectories in 
terms of their quality. 

1) Example case study: We frst present two examples about 
the obtained trajectories in Figure 9. As we can observe, before 
merging the trajectories, we only know a part of places users have 
visited, and their retrieved trajectories are not complete. After merg-
ing login records of multiple types of online IDs belonging to the 
same user, almost complete trajectories of the users can be retrieved. 
Thus, benefting from it, more information about users is obtained. 

2) Spatial and temporal resolution: In order to measure the 
beneft obtained from merging diferent IDs, we study the spatial 
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Figure 10: Distance and time gap between adjacent records. 

and temporal distance between adjacent records in the merged 
trajectories compared with unmerged trajectories. The results are 
shown in Figure 10. As we can observe, by merging login records 
of multiple online IDs, the average time gap and spatial distance 
between adjacent records are obviously reduced. Specifcally, the 
average time gap is reduced by 50%, i.e., from about 18 hours to 
8 hours by merging login records from EC accounts to all types 
of IDs. In terms of spatial distance, it is reduced by 25%. These 
results demonstrate that by combining diferent types of online IDs 
together, the quality of trajectories is signifcantly improved. 

3) Coverage rate for diferent location context: Another im-
portant metric to quantify the beneft is the coverage rate of three 
types of locations for trajectories, i.e., the percentage of users of 
which the trajectories have at least one residential, business or 
entertainment location, respectively. The results are shown in Fig-
ure 11. As we can observe, coverage rates of residential locations 
for all types of online IDs are more than 95%. However, the cov-
erage rates of business and entertainment locations for diferent 
types of online IDs are diverse. EC accounts have the smallest cov-
erage, indicating people tend to use their EC accounts in more 
private places; while OSN accounts have the highest coverage rate, 
indicating people tend to use their OSN accounts in more public 
places. Though OSN accounts have the highest coverage rate for 
business and entertainment locations, the number of OSN accounts 
is the smallest, as shown in Table 1. Thus, by merging online IDs 
belonging to the same user, the coverage rate is balanced, however, 
smaller than OSN accounts, but increases 2-3 times compared with 
IM and EC accounts. In addition, the total number of covered users 
is signifcantly improved. By combining them together, we can ob-
tain the trajectories covering more locations of all types, and thus 
characterize users in a more comprehensive way. 

4) Basic mobility metrics: In Figure 12, we present the comple-
mentary cumulative distribution function (CCDF) of the obtained 
trajectories in terms of two mobility metrics, including radius of 
gyration[12] and login distance from home. The radius of gyration 
is shown in Figure 12(a), which is the mean square root of the 
distance of each point in the trajectory to its center of mass, and 

can be computed as rд = 
q 
Σn 
=1 (ri − rcm )2/n, where ri represents i 

nthe ith login recorded, and rcm = 1/n 
P 
=1 ri is the center of mass i

of the trajectory. It characterizes the range of movement of each 
user. In the trajectories obtained from cell phone when users re-
ceive a call or a text message, the radius of gyration follows the 
truncated power-law distribution [12]. However, in our dataset, the 
distribution of radius of gyration can be approximated with the ex-
ponential distribution better. Another important indicator is login 
distance from home, which is shown in Figure 12(b). According 
to [3], the check-in distance from home for Brightkite, Gowalla 
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Figure 11: Covered locations of diferent types of IDs. 

and the cell phones follows power-law distribution within around 
100km. However, as we can observe, empirical distribution of login 
distance from home in our dataset is well approximated by expo-
nential distribution rather than power-law distribution. Specifcally, 
the average R-squared statistics between the empirical distribution 
and exponential distribution is as high as 0.9827, while for power-
law distribution, it is only 0.6788. Overall, the users’ trajectories 
inferred from the cookies information are very diferent from tra-
jectories obtained from base station or GPS positions. Thus, it is a 
new observation method of human behavior that is worth studying. 

In summary, after linking the IDs of the same users and classi-
fying diferent kinds of locations, we obtain more complete and 
meaningful user trajectories. The new user trajectory has a higher 
temporal and spacial resolution, and has a higher coverage rate 
of three kinds of locations, which provides a more comprehensive 
view of the user behavior. In addition, it is very diferent from 
trajectories directly obtained from the physical world in terms of 
mobility metrics including radius of gyration and login distance 
from home, indicating it also provides a diferent view of the user 
behavior of research value. 

6.2 Privacy Bounds of Users’ Trajectories 
Uniqueness of trajectory is a well-recognized metric to measure its 
privacy bounds, which is introduced by Montjoye et al. [5]. Specif-
cally, it is to estimate the number of points necessary to uniquely 
identify the mobility trace of an individual. If the uniqueness of tra-
jectories is high, the mobility dataset is likely to be re-identifable 
using information only on a few outside locations [5]. Thus, in 
order to analyze the privacy bounds of cyberspace fngerprints, we 
mainly focus on the uniqueness of trajectories in this section. 

1) Overall privacy bound: We frst analyze uniqueness of our 
obtained trajectories from three aspects: top N locations, random 
N spatio-temporal points, continuous N spatio-temporal points 
with temporal resolution of 3 hours for N from 1 to 4. The obtained 
results are shown in Figure 13. As we can observe, top 4 locations 

10
0

10
1

10
2

Radius of gyration (Km)

10
-2

10
-1

10
0

C
C

D
F

Power Law

Exponential

Empirical

10
0

10
1

10
2

Login distance from home (Km)

10
-4

10
-3

10
-2

10
-1

10
0

C
C

D
F

Power Law

Exponential

Empirical

(a) (b) 
Figure 12: Basic mobility metrics of obtained trajectories. 



#Locations

U
n

iq
u

e
n

e
s
s
 o

f 
tr

a
c
e

#Points

U
n

iq
u

e
n

e
s
s
 o

f 
tr

a
c
e

#Points

U
n

iq
u

e
n

e
s
s
 o

f 
tr

a
c
e

Subscribers 17056 Regions 2048 Regions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial granularity

N
o
rm

a
liz

e
d
 u

n
iq

u
e
n
e
s
s
 o

f 
tr

a
c
e
s

1 points

2 points

3 points

4 points

Physical context

U
n
iq

u
e
n
e
s
s
 o

f 
tr

a
c
e

(a) Top (b) Random (c) Continuous 
Figure 13: Uniqueness of traces for top N locations, ran-
dom N spatio-temporal points, and continuous N spatio-
temporal points. 

can uniquely characterize 62% individuals, and 4 random spatio-
temporal points are enough to identify 82% of the individuals, and 
4 continuous spatio-temporal points are enough to identify 87% of 
the individuals, which indicates that uniqueness of our obtained 
trajectories is high and most users are likely to be re-identifable 
by using only a few outside locations. 

2) Spatial diference: In Figure 14, we analyze the uniqueness 
of trajectories with respect to the spatial granularity and location 
types. The privacy bound of trajectories with diferent spatial gran-
ularity, which includes dividing the whole city into 2048 regions, 
17056 regions, and over 3 million subscribers, respectively. The 
results are shown in Figure 14(a). A trivial observation is that with 
higher spatial granularity, more privacy of users is revealed. How-
ever, when there are 4 spatio-temporal points, the corresponding 
privacy bound is almost not infuenced by the spatial granularity, 
remaining as high as 0.88 even when the city is only divided into 
2048 regions, indicating that reducing spatial granularity does not 
work on preserving privacy under this condition. In addition, the 
uniqueness of points for locations of diferent types is shown in 
Figure 14(b). Residential places have the highest uniqueness, fol-
lowed by entertainment places, while business places expose the 
least information of users. It indicates that residential locations 
expose more privacy of users, which coincides with our empirical 
knowledge that home is more private places for users. 

3) Diferent types of online IDs: Next, we analyze the infu-
ence of diferent types of IDs on the privacy leakage. As shown in 
Figure 15(a), the uniqueness of trajectories for IM accounts is the 
strongest, indicating it contains the most information about users, 
while EC accounts is the weakest. Further, the process of merging 
records of multiple online IDs is shown in Figure 15(b). By merging 
trajectories of diferent types of online IDs, their uniqueness is 
increased, indicating that by linking online IDs belonging to the 
same user together, more privacy of users is revealed. 

In summary, the obtained user trajectories are highly unique. 
Even when spatial granularity is very low, 4 points are sufcient to 
uniquely identify 88% users, indicating that it is easy for the attacker 
to re-identify the trajectory of a targeted individual and make a big 
threat to users’ privacy. In addition, the type of online IDs and the 
physical context of locations show a big infuence on the privacy 
bound, which can help to preserve user privacy in further work. 

7 RELATED WORK 
The potential threat of user privacy leakage through online activi-
ties has attracted a lot of attention from the research community in 
the past decade. For example, it has been reported [19, 20, 22, 25, 29] 

(a) (b) 
Figure 14: Spatial diference of the privacy bound. 

that a variety of personally identifable information, i.e., age, gen-
der, zipcode, address, or even real-name, can be leaked via HTTP 
headers, URIs, cookies that we left when browsing the web service. 
Furthermore, it has been shown [18, 23] that additional personal or 
private information about users, e.g., sexual orientation, etc. can 
also be inferred from the digital records left online. In order to 
preserve privacy, a number of technical solutions have been pro-
posed [2, 8, 33, 39]. All these studies highlight various aspects of 
cyberspace user privacy leakage. In contrast, our work calls atten-
tion to another aspect of user privacy leakage – physical world 
privacy leakage when accessing the cyberspace web services. 

In terms of human mobility, recent extensive studies focus on 
discovering individual mobility patterns[12], revealing mobility 
prediction limits[37] and building accurate mobility model[9, 36]. 
On the other hand, individual mobility is revealed with high unique-
ness to distinguish each other even in a large population[5, 6, 44] 
These investigations call attention to the privacy risks inferred 
from human mobility [5, 14, 16, 27, 44], along with a number of 
privacy-preserving techniques [7, 14, 26, 27, 38]. All these works 
deal with the mobility understanding and privacy analysis based 
on the physical world directly observed human mobility. These 
are very diferent scenarios from the one we address here, because 
the mobility trajectories are inferred from the cookies information 
when we accessing the web. 

In our system, user detection and location classifcation are other 
two key workfows. In terms of user detection, linking accounts of 
the same user across datasets are recognized as an important open 
problem [15, 17, 28, 34]. Most existing solutions rely on either uti-
lizing diferent portions of the same dataset[11, 15, 17] or observing 
the same behavior across thematically similar domains[10, 28]. The 
only approach proposed to date that is able to provide generic and 
self-tunable solution is POIS[34] by utilizing the temporal-spatial 
behaviors of humans. However, this approach can only match user 
identifers of two domains. Moreover, the mobility assumption in 
the built model and proposed theory are far from reality, and we 
pick it as a benchmark for our comparative analyses. In terms of 
location classifcation, it is also a hot topic recently[42], especially 
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in location-aware social networks[3, 4, 24]. Diferent from previous 
solutions, we combine the supervised and unsupervised learning 
method to suit the dataset, which achieves better performance. 

8 CONCLUSIONS 
In this work we have demonstrated that it is possible to infer and 
reveal user physical world privacy via cyberspace privacy leakage, 
namely, by correlating the cyber “fngerprints” (e.g., user IDs and 
other information contained in cookies) left by users in the cy-
berspace with the “footprints” (e.g., hints about physical locations) 
left by users in the physical world. We have developed a power-
ful privacy analysis system, which combines the login records of 
users and physical context information, and successfully reveals 
main privacy leakage of users. Our analysis unveils that cyberspace 
cookie logs contain high-quality user trajectories. In addition, most 
of user trajectories can be discovered and confrmed by leveraging 
only a few exogenous records of GPS coordinates. Furthermore, 
much detailed physical privacy of users can be inferred by apply-
ing some simple analytical methods to users’ mobility trajectories. 
In summary, our study provides a systematic and comprehensive 
understanding of user physical-world privacy leakages via user cy-
berspace privacy leakage. 
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