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Abstract—Rapid urbanization has posed signifcant burden on urban transportation infrastructures. In today’s cities, both private and 
public transits have clear limitations to fulfll passengers’ needs for quality of experience (QoE): Public transits operate along fxed 
routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide 
point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid 
hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips 
among spokes through a few hubs or direct paths, with travel time as short as private transits and fare as low as public transits. 
CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system 
operation cost. To evaluate the performance of CityLines, we conduct extensive data-driven experiments using one-month real-world 
trip demand data (from taxis, buses and subway trains) collected from Shenzhen, China. The results demonstrate that CityLines 
reduces 12.5%-44% average travel time, and aggregates 8.5%-32.6% more trips with ride-sharing over other implementation 
baselines. 

Index Terms—Hub-and-spoke network, urban computing, spatio-temporal data analytics. 
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1 INTRODUCTION 

The past few decades have seen rapid urbanization at the world 
scale. It is reported that the world urban population has reached 
54% in 2014, and it is projected that by 2050, two-thirds of the 
world population will be urban [2]. The rapid growth in urban 
population has placed an enormous strain on urban transportation 
infrastructures. This is particularly the case in developing coun-
tries which experience the fastest urbanization, but suffer from far (a) Package delivery system (b) Airlines route map

less developed urban transportation infrastructures. 
Conventionally, there are two primary models of urban trans-

port systems, namely, public transit services such as buses, 
subway, and private passenger services such as taxis, shared 
shuttles, ride-hailing services (e.g., Uber or Lyft). Both systems 
have limitations in fulflling passengers’ demands or “quality-of-
experience” (QoE), especially during peak demand hours, due to 
the following fundamental trade-offs in transit service effciency 
and costs. Private transits provide exclusive (non-stop) services, 
thus its transit fare is high, due to the high operation cost. Public 
transits offer shared rides, thus reducing the cost of operations 
when there are a signifcant number of people riding together, say, 
on a bus. However, existing public transits operate along fxed 
routes with fxed time tables, where the transit capacity offered do 
not always match the time-varying trip demands. Consequently, 
many urban residents rely heavily on private cars and other 
transport modes (e.g., motor cycles, bikes) to get around a city, 
creating urban road congestion. 
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Fig. 1: Applications of Hub-and-Spoke Model 

The aforementioned urban transport systems operate primarily 
in two modes: fxed route mode (with a large number of stops) 
in public transit services; and point-to-point mode in private pas-
senger services. Differing from these two modes, hub-and-spoke 
mode1 is a system of connections, where all traffc move along 
spokes connected through a small number of hubs. This mode 
has been extensively studied in the literature and is commonly 
used in industry, particularly in Airline route map planning [3], 
[4], telecommunications [5], freight [6], [7], [8], and package 
delivery system. Hub-and-spoke mode has advantages over the 
other two transit modes in the following aspects: It requires less 
stops/transfers than existing public transits to save on trip time; it 
requires less routes than private transits, where the smaller number 
of routes may improve the effciency of using transportation 
resources and increase the occupation rate. Figure 1 shows two 
applications of hub-and-spoke mode in package delivery system 
and Airlines route map, respectively, where packages and airlines 

1. Fixed route mode and hub-and-spoke mode both allow transfers during a 
trip, where fxed route mode relies on a large number of densely distributed 
stops/transfers (e.g., one stop per kilometer) to serve passengers, and hub-
and-spoke mode employs very few (usually less than three) hubs per trip to 
guarantee the quality of experience while aggregating trip demands. 
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aggregate at and distribute from hubs. Hence, the hub-and-spoke 
mode offers a great potential to aggregate urban trip demands 
to leverage economies of scale, while improving users’ QoE. 
However, it can a challenging task to plan and implement the hub-
and-spoke mode in urban transportation for the following reasons: 
(i) Urban transits operate on an extremely large spatio-temporal 
scale, thus it is non-trivial to develop a scalable hub-and-spoke 
network to dynamically serve vast volumes of trip demands over 
time. In operations research, the hub location problem (HLP) has 
been studied for Industry planning, e.g., airline route planning [3], 
[4]; these solutions, however, are limited to a maximum scale 
of 200 regions/spokes. (ii) In a real urban area with diverse 
distributions of trip demands, it is desirable but yet challenging 
to integrate both point-to-point and hub-and-spoke modes in an 
adaptive and dynamic fashion. 

To tackle these challenges, in this work we propose CityLines 
(in analogy to “Airlines” for fight route services), a scalable 
dynamic hybrid hub-and-spoke transit system with shared shuttles. 
The CityLines service relies on a hybrid hub-and-spoke transit 
network, consisting of a set of inter-connected hub stations in the 
urban area. A trip demand originated from a small region (referred 
to as a spoke region) is routed to the destination with a non-stop 
service (in the point-to-point mode) or via a hub station (in the 
hub-and-spoke mode). Given a city with n small regions (spokes), 
if a total budget allows L hubs and M point-to-point transit routes, 
CityLines aims to fnd the hub locations and assign urban trip 
demands to hubs or point-to-point routes, so as to minimize the 
average travel time. Our main contributions2 are summarized as 
follows. 
• To scale up the hybrid hub-and-spoke network in CityLines, 
we propose a two-stage planning framework, including the hub 
selection stage and the trip assignment stage. The hub selection 
stage aims to fnd a small set of high quality candidate regions 
as hub candidates, so that a maximum number of least travel time 
paths of trip demands pass through them. Then, the trip assignment 
stage assigns each trip demand to a hub (for a detour) or a point-to-
point transit service, so that the average travel time is minimized. 
• To evaluate the performance of our CityLines framework, we 
conduct experiments on real trajectory data of taxi, bus and 
subway collected during March 2014 in Shenzhen, China. The 
results demonstrate that CityLines provides a transformative urban 
transit service, with travel time as short as private transits and 
travel cost as low as public transits. Moreover, we deployed a 
CityLines system [9], and publicized our system code and a part 
of anonymized urban transit data [10] to allow others to repeat 
and validate our results, and to (more importantly) facilitate the 
research in smart transit community. 

The remainder of the paper is organized as follows. Section 2 
formally defnes the problem, presents the overview and outlines 
the key components of our CityLines framework. Section 3 pro-
vides detailed methodology of CityLines framework. Section 4 
presents evaluation results over a large-scale urban trip demand 
data. Related works are discussed in Section 6 and the paper is 
concluded in Section 7. 

2. Note that comparing to the preliminary version of this work in [1], 
we have (i) introduced a new (optimal hub selection (OHS)) component to 
signifcantly promote the system scalability (in Section 3.3); (ii) described the 
details of our deployed CityLines online system implementation (in Section 5); 
(iii) presented more comparison results with public and private transit services, 
and with baselines of hub selection and trip assignments (in Section 4.3 and 
4.4.). 

2 OVERVIEW 

In this section, we will motivate and defne hybrid hub-and-spoke 
planning problem, detail the datasets we use, and outline CityLines 
system framework. 

2.1 System Design Trade-offs and Motivations 
The choice of urban transit services from a passenger depends 
on the QoE and cost of the trip, where the QoE hinges on many 
potential factors, including in-vehicle time, level of inconvenience, 
etc [11], and the trip cost depends on the service operation cost. 
Private transit services in general offer high QoE, with low in-
vehicle time and high level of convenience, but at a high cost 
of trip fare. On the other hand, by reducing the operation cost 
with ride-sharing, public transit services have a lower trip fare, but 
longer in-vehicle time. Hence, due to the fundamental trade-off 
between passengers’ QoE and operation cost, private and public 
transit services are operated to meet one of the two aspects, 
respectively. The next question is how we can develop a transit 
service to dynamically serve urban trip demands with travel time 
as short as taking private transits and trip fare as low as taking 
public transits? In this paper, by utilizing the historical trip data 
from urban transportation systems in Shenzhen, we make the 
frst attempt to develop CityLines, a hybrid hub-and-spoke transit 
model, that allows an integration of both hub-and-spoke mode (to 
aggregate trip demands with small number of hubs, thus reduce 
the operation cost) and point-to-point mode (to reduce the overall 
trip time, thus to maintain a high passengers’ QoE). 

2.2 Problem Defnition 
Thanks to the fast development of location sensing technologies, 
the increasing prevalence of sensors, mobile devices, and Au-
tomated Fare Collection (AFC) devices has led to an explosive 
increase of the scale of spatio-temporal data, including passenger 
trip demands as defned as follows. 

Defnition 1 (Trip demand). A trip demand of a passenger 
indicates the intent of a passenger to travel from a source location 
src to a destination location dst from a given starting time t, 
which can be represented as a triple hsrc, dst, ti. 

Passenger trip demands can be obtained from various data 
sources. For example, the transaction data from AFC devices in 
buses and subway systems record passenger trip demands at the 
level of bus stops and subway stations. Taxi GPS trajectory data 
with occupation information include the trip demands for taxi 
trips. For urban trip demands, we consider two types of transit 
modes below, i.e., point-to-point mode and hub-and-spoke mode. 

Defnition 2 (Point-to-point mode). With point-to-point mode, a 
trip demand is served through a direct (usually the shortest or 
least-cost) path from the source src to the destination dst. 

The urban area consists of small regions, where a trip demand 
may originate from or destine to. Each of such small regions is 
referred to as a spoke. Some regions, referred to as hubs, are 
deployed with transfer stations, that allow trips to detour at. Given 
all spoke and hub regions, a hub-and-spoke transit mode can be 
interpreted as follows. 

Defnition 3 (hub-and-spoke mode). With hub-and-spoke mode, a 
trip demand hsrc, dst, ti is detoured through a small number of ` 
hubs, h1, · · · , h` (with ` ≤ 3 in general). Thus, the path taken for 
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Fig. 2: Trip source locations Fig. 3: Trip destination locations Fig. 4: Shenzhen road map 

the trip is {src, h1, · · · , h`, dst}, and each segment of the path 
is in general a direct (least-cost) transit. 

Note that the more hubs a trip demand takes, the lower QoE 
a passenger would receive. In Airlines route planning, one hub 
detour is commonly used for trip demands. In this paper, to 
guarantee a high QoE, we allow ` = 1 hub for a trip demand, 
where our framework also works for cases with ` > 1. 

Ideally, for those source-destination location pairs with a large 
number of trip demands, e.g., commute trips between a residen-
tial area and a commercial/working area, point-to-point mode is 
preferred. On the other hand, for those source destination pairs 
with less trip demands, hub-and-spoke mode is more promising to 
aggregate trip demands and reduce the operation cost by leverag-
ing economics of scale. To balance such trade-offs, we propose to 
investigate the hybrid hub-and-spoke planning problem. 
Problem defnition. Given a set of n spokes (regions) in an 
urban area, a set of K trip demands, and a budget of M point-
to-point transit routes and L hub stations to deploy, we aim to 
fnd the optimal L regions to deploy hub stations and optimal 
assignment of trip demands to either point-to-point transit or a hub 
to detour from, so that the average travel time of all trip demands 
is minimized. 
System dynamics. Note that the trip demand distribution changes 
dramatically over time and follows a stable diurnal pattern. To 
better cope with the trip demand dynamics, we divide each day 
into fxed time intervals, and develop CityLines solutions for 
different intervals. For the rest part of this paper, we focus on 
solving the hybrid hub-and-spoke planning problem for a given 
time interval. 

2.3 Data Description 
To tackle the problem defned above, two real datasets are em-
ployed, including (1) trip demand data; (2) road map data. For 
consistency, all datasets are collected from the same time interval 
in Shenzhen, China. Below, we describe each of these datasets in 
details. 
Trip demands data are extracted from large GPS trajectory 
dataset (from taxis) and AFC billing dataset (from buses and 
subway trains) collected from Shenzhen, China during March 
2014. For trip demands from buses and subway trains, we extract 
their starting and ending stations from the AFC billing data as 
source and destination locations. On the other hand, we employ 
taxi GPS data to extract trip demands served by taxis. Each GPS 
record contains a unique ID, time stamp, latitude, longitude, and 
passenger indicator. The passenger indicator feld is a binary 
value for taxi data, indicating if a passenger is aboard or not. 
Hence, a sequence of taxi GPS points with passenger indicator 
as 1 represent a taxi trip, and the frst and last GPS points of 
the sequence are the source and destination locations (i.e., src 
and dst) of a trip demand. The time stamp of the starting GPS 
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point is the trip starting time t. Figure 2 and Figure 3 show the 
geo-distributions of source and destination locations in Shenzhen 
during the morning rush hours 7–10AM. Note that in the fgures, 
we characterize the trip demands by the density of the events (i.e., 
the number of source (or destination) locations per hour within a 
geographic region of 1 km2 along the road networks). When the 
density is larger than or equal to 100, the region is considered as 
a high demand region. A low demand region has the density low 
than 10 events per hour. 

Type Counts Type Counts 
Motorway 563 Secondary 868 

Trunk 258 Tertiary 1,393 
Primary 745 Unclassifed 16,829 

TABLE 1: Road Map Data in Shenzhen 

Road map data. In our study, we use the Google GeoCoding [12] 
to retrieve the bounding box of Shenzhen. The bounding box 
is defned between 22.45◦ to 22.70◦ in latitude and 113.75◦ 

to 114.30◦ in longitude. The covered area is about 1, 300km2 . 
Within such a boundary, Shenzhen road map data were obtained 
from OpenStreetMap [13], which are visualized in Figure 4. The 
road map data contain six levels of road segments in Shenzhen, 
which are detailed in Table 1. 

2.4 Solution Framework 
Figure 5 presents our optimal hybrid hub-and-spoke (OHHS) 
framework for CityLines system. It takes trip demand data and 
road map data as inputs. The whole framework consists of three 
stages in Figure 5: (1) map gridding, (2) trip demand aggregation, 
and (3) optimal hybrid hub-and-spoke (OHHS) planning. 
• Stage 1 (Map gridding): The road map is divided into equal 
grids with a side-length of 0.01 degree in latitude and longitude. 
Then, a fltering process is conducted to eliminate those grids 
off the road network, so that the remaining n grids are strongly 
connected by the road map, namely, each grid can reach any other 
grid through the road map. We refer to those remaining grids as 
spokes in the urban area. Then, we estimate average travel time 
between each spoke pair. Thus, an n by n travel time matrix C is 
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obtained, which contain the least travel time of each pair of spokes 
in the urban area. 
• Stage 2 (Trip demand aggregation): In this stage, all sources 
and destinations of trip demands are aggregated to the spokes ex-
tracted in stage 1. Hence, a trip demand hsrc, dst, ti is aggregated 

0 0as hs, s , ti, where s and s are the spokes where source src and 
destination dst are located at. Then, a spoke level trip demand 
matrix V is obtained with each entry Vij representing the number 
of trip demands originating from spoke i and terminating at spoke 
j. 
• Stage 3 (Optimal hybrid hub-and-spoke (OHHS) planning): 
Given a budget of M point-to-point transit paths, and L hub 
stations to deploy, we propose a two-step optimization framework 
to tackle the optimal hybrid hub-and-spoke (OHHS) planning 
problem, including an optimal hub selection (OHS) step and 
an optimal trip assignment (OTA) step. The OHS problem is 
formulated as a maximum coverage problem, that selects M + L 
high quality hub candidates from n spokes. The OTA problem is 
formulated as a p hub location problem (p-HLP) problem, which 
optimally assigns the trips to point-to-point transits or one hub to 
detour, with the goal of minimizing the average travel time per 
trip. 

Table 2 provides notations used throughout the paper. 

Notations Descriptions 
G = {gi}, 1 ≤ 
i ≤ n 

G is the spoke set of the gridded road map and 
there are in total n = |G| spokes. 

C = {Cij } 

V = {Vij } 

Cij is average travel time between a spoke pair 
(gi, gj ). 
Vij is the number of spoke level trip demands. 

K, L, M K is the total number of trip demands; L (resp. M ) 
is the number of hub stations (resp. point-to-point 
paths) to be deployed. 

H = {hm}, 1 ≤ 
m ≤ M + L 

H is set of selected physical hub candidates. 

xk ∈ {0, 1} xk indicates if a spoke k is selected as a hub 
candidate. 

yij ∈ {0, 1} 

mx ∈ {0, 1}ij 

yij indicates if a trip demand (gi, gj ) is covered 
by hub candidates. 
mx indicates if a trip demand (gi, gj ) detours at aij

hub candidate hm. 
ym ∈ {0, 1} ym indicates if a hub candidate hm is chosen to 

deploy a hub. 

TABLE 2: Notation Table 

3 METHODOLOGY 

3.1 Stage 1: Map Gridding 

The passenger trip demands (i.e., sources and destinations) are 
geo-graphically and dynamically distributed across urban areas. 
In the frst stage, the entire urban area needs to be partitioned into 
spokes (i.e., small regions), so that trip demands with the same 
source and destination spokes are served in the same fashion, 
e.g., by the same shuttle at the same time. For the ease of 
implementation in practice, in this paper, we adopt the gridding 
based method, which simply partitions the map into equal side-
length grids [14], [15]. Moreover, the gridding based method 
allows us to adjust the side-length of grids, to better examine 
and understand impacts of the spoke size. Hence, in Stage 1, our 
approach divides the road map into equal-size grids with a pre-
defned side-length s in latitude and longitude. Figure 6 shows all 
grids (i.e., spokes) in the bounding rectangle region of Shenzhen, 
China, with s = 0.01◦ . Then, we remove the spokes without a 

Fig. 6: Connected spokes in Shenzhen 

road segment, which are usually located in the no-sense areas, 
such as ocean or mountain. The remaining spoke set is denoted as 
G with n = |G| spokes, which can be represented as a graph, with 
spokes as nodes, connected by the urban road network. Figure 6 
highlights (in light color) those n = 1, 018 spokes on the road 
network of Shenzhen, China. 
Average travel time estimation between spoke pairs. Each 
spoke grid has a center location, which is not necessarily on a 
road segment. We frst map the center location on a nearest road 
segment in the spoke, and use the mapped location on the road 
segment to represent the spoke. Then, for each pair of neighboring 
spokes gi and gj , we can calculate average travel time on the road 
network from the trajectory data of taxis and buses, denoted as 
Tij . The matrix T = [Tij ] thus represent the adjacency travel time 
matrix between neighboring spokes. Since the urban road network 
is well connected, such a spoke graph is strongly connected [16], 
which means that each spoke gi has a path to any other spoke 
gj . Hence, we can apply the shortest path algorithms, such as 
Dijkstras and Bellman-Ford algorithms to calculate the least travel 
time between each spoke pair. We denote the least travel time 
from spoke gi to gj as Cij , and C = [Cij ] thus form the 
least travel time matrix among spokes. The diagonal entries of 
C indicate the travel time within each spoke. In our study, we set 
these entries to be 0, namely, CityLines service primarily serves 
relatively long distance trips. It is more convenient to walk from 
source to destination for a trip demand within a spoke. 

3.2 Stage 2 :Trip Demand Aggregation 
Each trip demand hsrc, dst, ti specifes a source location src, and 
a destination location dst. Given n spokes extracted from stage 1, 
we now in a position to aggregate all trip demands to spoke pairs, 
that is, for all trip demands with src ∈ gi and dst ∈ gj , they 
will be considered in the same group with the source spoke gi 
and destination spoke gj . We denote Vij as the total number of 
trip demands with source spoke as gi and destination spoke as 
gj . Clearly, Vij = |{hsrc, dst, ti|src ∈ gi, dst ∈ gj }|. Then, 
the volume matrix V = [Vij ] indicate the number of pairwise 
trip demands across the spokes. From our dataset collected from 
Shenzhen, China (as shown in Figure 2 and 3), the trip demands 
are distributed unevenly across spoke pairs. 

3.3 Stage 3: Optimal Hybrid Hub-and-Spoke (OHHS) 
Planning 
Consider a city with a budget of deploying point-to-point transit 
service for M spoke pairs, and L hubs for trip demands to detour. 
Given the spoke set G of n connected spokes, least travel time 
matrix C = [Cij ], and volume matrix V = [Vij ] as input, the 
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hybrid hub-and-spoke planning problem aims to identify M spoke 
pairs to deploy point-to-point transit, L spokes from G to deploy 
hubs, and assign each of the rest source-destination spoke pairs 
to a hub for detour, so as to minimize the average travel time 
for all trip demands. There are primarily two key challenges in 
solving this problem: (i) The hub candidate set is the entire spoke 
set G of size n, where n = 1, 018 in Shenzhen as discussed in 
the example in Stage 1. Suppose that there are a total of L = 10 
hubs to be deployed. The search space of all possible 10 hubs� � n n! 6.8 × 1023is about a size of = = , which isL L!(n−L)!
in general unsolvable for a combinatorial optimization without 
an approximation. (ii) The hub location planning problems have 
been studied extensively in the literature [17], but none of them 
consider a scenario with both point-to-point and hub-and-spoke 
transit modes. Hence, how to formulate the combination of these 
two transit modes in a single framework is challenging. To address 
the frst challenge, we develop a two-step optimization framework, 
with step 1 (referred to as optimal hub selection (OHS)) to pre-
select a small set of “high quality” hub candidates, and step 2 to 
fnd the best L hubs from a much smaller searching space. For the 
second challenge, we introduce a novel notion of virtual hub into 
the traditional hub location problem to characterize those point-
to-point transit mode, namely, all trip demands assigned to the 
virtual hub are chosen for point-to-point transits. Below, we will 
elaborate on each of these two steps in details. 

3.3.1 Optimal Hub Selection (OHS) 

The goal of this step is to pre-select a small set of “high quality” 
hub candidates from the entire spoke set G of size n, so as to 
reduce the searching space in the next step when fnalizing hub 
locations. In general, if a hub resides on the least travel time 
path of a trip demand, it generates the least additional cost, 
when detouring the trip demand to that hub. In this case, we 
consider that the hub “covers” the particular trip demand. Hence, 
given all (spoke-level) trip demands, the single hub candidate that 
resides on (or covers) the most trip demands is the “best” hub 
candidate. However, when we look for multiple hub candidates, 
we want a collection of hub candidates that together cover a 
maximum number of unique trip demands, which may not be the 
hub candidates with top numbers of covered trip demands, since 
the coverage of different hub candidates may overlap. Given such 
intuitions, we formulate our optimal hub (candidate) selection 
(OHS) problem as follows. 

Denote a source-destination spoke pair from spoke gi to gj 

as (gi, gj ). Given a hub candidate gk, we denote S(gk) as the 
set of source-destination spoke pairs with their least travel time 
paths going through gk. Let ~x = [xk] be a vector of binary hub 
selection variables, indicating if a spoke gk ∈ G is selected as a 
hub candidate (with xk = 1) or not (with xk = 0). Moreover, 
we denote ~y = [yij ] as the matrix of binary variables, with yij 

indicating if a source-destination spoke pair (gi, gj ) is covered by 
the selected candidate hubs (with yij = 1) or not (with yij = 0). 
We aim to resolve ~x, indicating the best hub candidates, and ~y, 
the source-destination spoke pairs covered by the hub candidate 
set ~x, such that the total number of unique trip demands from 
the covered source-destination spoke pairs is maximized. OHS 
problem is formally summarized below. 

X X 
max: Vij yij (1) 

gi∈G gj ∈GX 
s.t. : xk ≤ M + L (2) 

gk ∈GX 
xk ≥ yij ∀gi, gj , gk ∈ G (3) 

(gi,gj )∈S(gk) 

yij , xk ∈ {0, 1} ∀gi, gj , gk ∈ G (4) 

The objective function in eq.(1) captures the total number 
of trip demands being covered by the selected hub candidates. 
The frst constraint (in eq.(2)) indicates that the total number of 
selected hub candidates is no more than M + L, with L as the 
maximum number of hubs to be deployed, and M as the maximum 
number of source-destination spoke pairs to be served by point-
to-point transit mode. Since the trip demands being covered in 
step 1 may be served by point-to-point transit mode, selecting 
M + L hub candidates in step 1 guarantees that we have enough 
high quality hub candidates for step 2. The second constraint (in 
eq.(3)) guarantees that if a spoke pair (gi, gj ) is covered (with 
yij = 1), at least one spoke gk, that “covers” (gi, gj ) should be 
selected as a hub candidate (i.e., xk = 1). The last constraint (in 
eq.(4)) specifes that each xk and yij is a binary variable. 

Our optimal hub selection (OHS) problem is fundamentally a 
(weighted) maximum coverage problem [18]: Given a number ` 
and n sets of elements, which may have some common elements, 
we select ` of these sets so that the maximum number of unique 
elements are covered. OHS problem is NP-hard, and there is no 
polynomial-time algorithm that guarantees to fnd the optimal 
solution for all instances unless P = NP . 

In the literature, there have been a variety of effcient ap-
proximation algorithms for solving weighted maximum coverage 
problem. The generalized maximum coverage algorithm [18] 

1achieves an approximation ratio of 1 − − o(1). Moreover, e 
a greedy algorithm for weighted maximum coverage problem 
has an approximation ratio of 1 − 1 [19], [20]. We employ the e 
approximation algorithm in [20] for solving our OHS problem. 

3.3.2 Optimal Trip Assignment (OTA) 
The output hub candidates from step 1 has signifcantly reduced 
the hub selection space from n = |G| to M + L. The next 
step is to further select L hubs from the M + L candidates 
{h1, · · · , hM+L}, and assign them to spoke pairs, and choose 
M spoke pairs for point-to-point transit mode, so that the overall 
average travel time of trip demands is minimized. Without the 
point-to-point mode part, this problem is a well-studied combi-
natorial optimization problem, so called, p-HLP (p hub location 
problem), that aims to select a total of p hubs and assign each trip 
demand to one and only one hub, to minimize the average trip 
time. To include the point-to-point transit mode, we introduce a 
novel notion of virtual hub, denoted as h0, which is not physically 
one entry from M +L hub candidates. Figure 7 illustrates how the 
virtual hub h0 works. All trip demands assigned to h0 are served 
by point-to-point transit mode. Instead, a trip demand assigned to 
a physical hub hi (1 ≤ i ≤ M + L) will be detoured through hi 

during the trip. By introducing the virtual hub h0, the optimal trip 
assignment (OTA) problem can be formulated as follow. 

Let Cij
k be the travel time for a trip demand from spoke gi to gj 

detoured at hub hk. Recall that the least travel time from spoke gi 
to gj is Cij . Thus, with a physical hub hk, we have Cij

k = Cik + 
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Ckj ; and for the virtual hub h0, we have Cij 
0 = Cij , since a trip 

demand assigned to virtual hub h0 is served with point-to-point 
ktransit mode. Let xij be a binary assignment variable indicating 

if trip demands with source-destination spoke pair (gi, gj ) are 
k kassigned to hub hk (x = 1) or not (x = 0). Moreover, we ij ij 

denote ym (with 1 ≤ m ≤ M + L) as a binary selection variable, 
indicating if a physical hub hm is selected (ym = 1) or not (ym = 
0). We want to resolve ym, indicating the fnally selected L hubs, 

kand xij , the trip assignment to hubs, such that the average travel 
time of trip demands is minimized. This OTA problem is presented 
below. 

X X X1 kmin: Vij Cij
k xij , (5)

V 
gi∈G gj ∈G 0≤k≤M+LX 

ks.t. : xij = 1, ∀gi, gj ∈ G, (6) 
0≤k≤M +L 

X X 
0 xij ≤ M, (7) 

gi∈G gj ∈GX X 
kVij xij ≤ Fk, 1 ≤ k ≤ M + L, (8) 

gi∈G gj ∈GX 
ym ≤ L, (9) 

1≤m≤M+L 
m ym ≥ xij , ∀gi, gj ∈ G, 1 ≤ m ≤ M + L, (10) 

k xij ∈ {0, 1}, ∀gi, gj ∈ G, 0 ≤ k ≤ M + L. (11) 

ym ∈ {0, 1}, 1 ≤ m ≤ M + L. (12) 

The objective function in eq.(5) indicates the average travel P 
time of all trip demands, with V = Vij as the total gi,gj ∈G 
number of trip demands to be planned. The constraint in eq.(6) 
states that each source-destination spoke pair should be served, 
i.e., by one and only one hub (including the virtual hub). The 
constraint in eq.(7) ensures that up to M source-destination pairs 
are served by point-to-point transit mode with direct paths. The 
constraint in eq.(8) specifes the capacity of each physical hub hk, 
namely, the total number of trips going through a hub hk cannot 
exceed the hub capacity Fk. The constraint in eq.(9) guarantees 
that the total number of physical hubs deployed is no more than L. 
Eq.(10) specifes a validity constraint, where a spoke pair (gi, gj ) 
is assigned to a hub candidate hm, if and only if hm is selected to 
deploy a hub, namely, ym = 1. The constraint eq.(11) and eq.(12) 

kindicate that xij and ym are binary variables. 
By introducing the virtual hub h0 into the formulation, our 

optimal trip assignment (OTA) problem allows both hub-and-
spoke and point-to-point modes. The nice property of OTA for-
mulation is that it still follows p-HLP (p hub location problem). 
Moreover, with the optimal hub selection step, the searching 
space for hubs has been reduced from all spokes in G to only 
M + L hub candidates. In the literature, p-HLP has been ex-
tensively studied, with several effcient approximation approaches 
developed. For examples, Ernst and Krishnamoorthy introduced a 
3-index formulation for p-HLP, which enables an LP relaxation 
based approximation solution [21]. Marin, Canovas and Landete 
introduced new formulations for p-HLP problem that generalized 
basic models with providing tighter LP bounds [22]. In this work, 
we adopt the solution proposed in [21] to solve our OTA problem. 

Fig. 7: Illustration of the virtual hub 
4 EVALUATION 

To evaluate the performances of our CityLines system, we conduct 
comprehensive data-driven experiments using large-scale urban 
trip demand datasets collected from Shenzhen, China. First of 
all, the comparison results of CityLines with traditional private 
and public models clearly demonstrate our advantages in reducing 
operation cost (i.e., the number of passengers per trip segment) 
and improving passenger QoE (i.e., average travel time per trip). 
Secondly, by comparing with baseline algorithms in implement-
ing hybrid hub-and-spoke transit planning, experimental results 
demonstrate that our CityLines system outperforms all other base-
lines (i) with 12.5%-44% reduction on average travel time per trip 
demand, and (ii) with 8.5%-32.6% more aggregated trips via ride-
sharing. Below, we elaborate on baseline methods, experiment 
settings and results. 

4.1 Baseline Methods 
We will conduct two sets of experiments to (i) compare public and 
private transit models with hybrid hub-and-spoke model employed 
in CityLines system, (ii) compare our proposed optimal hybrid 
hub-and-spoke (OHHS), i.e., a two-step optimization framework, 
with other baseline algorithms. 
Baseline transit models: We compare private and public transit 
models with our hybrid hub-and-spoke model. 
(1) Private transit model: This model serves trip demands via 
direct least travel time paths with non-stop service. 
(2) Public transit model: This model employs the existing public 
transit infrastructure (i.e., bus routes and subway lines), to serve 
all trip demands. 
Baselines for hub candidate selection: We compare our optimal 
hub selection (OHS) method with the two baseline methods below. 
(1) Random Selection (RS): This baseline method uniformly at 
random chooses M + L spokes from G as hub candidates. 
(2) Top Selection (TS): This baseline method selects M + L hub 
candidates from G with the top numbers of source-destination 
spoke pairs covered. 
Baselines for trip assignment: We compare our optimal trip 
assignment (OTA) method with the two baseline methods below. 
(1) Random Assignment (RA): This baseline method frst ran-
domly picks out L hubs from M+L hub candidates, and randomly 
assigns the trip demands to point-to-point mode or one of hub 
candidates. 
(2) Average Assignment (AA): This baseline method assigns the 
trip demands to point-to-point mode or one of hub stations, so that 
each hub (roughly) serves an equal amount of trip demands. 

In our experiments, we run the random selection (RS) and 
random assignment (RA) methods for 50 times and calculate 
the average results, so as to remove the potential impact of 
randomness. 
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(a) Trip demand distribution (b) Average travel time (c) Trip aggregation level 

Fig. 8: Comparison of transit models 

4.2 Experiment Settings 

From the trip demand aggregation stage, we obtain in total 
19, 428, 453 urban trip demands from taxis, buses and subway in 
Shenzhen, China, during March 2014. One interesting phenomena 
we observe from the data is that the trip demand distribution 
changes dramatically over different time intervals in a day. How-
ever, for the same time interval, it stays relatively unchanged over 
days. This is reasonable since daily urban commute/travel patterns 
are relatively stable. Hence, to better cope with the dynamics of 
trip demands, we divide each day into 5 time intervals: 6–11am, 
11am–4pm, 4-8pm, 8–12am, 12–6am, develop and apply different 
hybrid hub-and-spoke plans to each interval. We apply cross-
validation mechanism to evaluate our CityLines system: We use 
a sliding time window of four days. We employ the trip demands 
of day 1–3 as the input data, and develop the hybrid hub-and-
spoke solution. Then, we test the performance of the solution 
using the trip demand data from day 4. We move the sliding 
window over the working days in our data, and calculate the 
average performances for all sliding windows. In this section, we 
will use the time interval 6–11am, as an example to demonstrate 
the effectiveness and effciency of our CityLines system. Results 
for other time intervals are similar, and are omitted for brevity. 
Taking the trip demand data during 6–11am on March 12, 2014 
as an example, there were in total 202, 315 trip demands in the 
city. Given those 1, 018 connected spokes obtained, most (more 
than 90%) of trip demands aggregate to 700 source-destination 
spoke pairs. We sort all these spoke pairs by their numbers of trip 
demands in a decreasing order, and divide them into 7 groups, 
each with 100 spoke pairs. The resulting spoke pair groups with 
ID {#1, · · · , #7} are thus in a descending order in their numbers 
of trip demands per spoke pair (See Figure 8(a)). We will gradually 
add trip demands from each group (i.e., high volume group frst) 
into experiments, to evaluate how the problem scale affects the 
system performance. Table 3 lists confgurations used in our 
evaluation. 

For different planning methods, we evaluate operation cost 
using the trip aggregation level, and evaluate the passenger QoE 
using average travel time. Moreover, we use the number of covered 
unique trips to evaluate the quality of hub candidates selected in 
the optimal hub selection (OHS) step. These metrics are detailed 
below. 
Average travel time. Given a path planned for a trip demand tr = 
hsrc, dst, ti from the source to the destination, i.e., {g1, · · · , g`}, 

P 
the total travel time is given by Ti−1,i. The average travel 2≤i≤` 
time of all trip demands characterizes the quality of experience 
passengers receive from the planning strategy. The lower the time 
is, the higher QoE passengers experience. 
Trip aggregation level (of trip demands). Given a planning 
method, each trip demand traverses a few trip segments. For 
example, in public transit model, the trips are divided into small 
trip segments between consecutive stop pairs. In CityLines service, 
each trip consists of spoke-to-hub and hub-to-spoke trip segments. 
In private transit model, each spoke pair maintains a unique trip 
segment as the direct path. Since trip demands may share the trip 
segments, each trip segment has a certain number of shared trip 
demands. The average number of shared trip demands per trip 
segment indicates the ride-sharing level, or trip aggregation level 
of the planning method. The higher the trip aggregation level is, 
the lower the operation cost is. 
Hub coverage. To reduce the computational cost, we pre-select 
a small set of “high quality” hub candidates from the spoke set 
G. Intuitively, the hubs residing on the least travel time paths are 
with good quality, in terms of generating additional travel time. 
Hence, we evaluate the quality of a selected set of hub candidates, 
using the number of unique least travel time paths they covered, 
(in short, referred to as hub coverage). 
Running time. For the same number of spoke pairs, hubs, and 
directed paths, we evaluate the computational time (i.e., running 
time) by comparing our scalable OHHS algorithm to the basic 
OHHS algorithm proposed in [1] (in short, OHHS-Basic). Fig-
ure 12 shows the results with the problem scale ranging from 
20 to 700 spoke pairs. The planning budget includes 10 hubs 
and 5 directed paths. The results clearly indicate that our scalable 
2-stage OHHS framework only takes less than 3 minutes for a 
problem with 700 spoke pairs. On the other hand, when directly 

spoke pairs {100, 200, · · · , 700}
# of hubs {1, 2, · · · , 10}
# direct paths {1, 2, · · · , 10}
transit model hybrid hub-and-spoke, public transit, 

private transit 
hub selection OHS, Top Selection (TS), Random Se-

lection (RS) 
trip assignment 

hybrid hub-and-spoke planning 

OTA, Average Assign (AA), Random 
Assign (RA) 
OHHS, TS-AA, TS-RA, RS-AA, RS-
RA, OHHS-Basic [1] 

TABLE 3: Evaluation confgurations 
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(a) Hub coverage over # hubs 

(b) Hub coverage over spoke pairs 

Fig. 9: Hub candidate selection 

(a) Average travel time over spoke pairs (a) Average travel time over spoke pairs 

(b) Trip aggregation level over spoke pairs 

Fig. 10: Trip assignment 

(b) Trip aggregation level over spoke pairs 

Fig. 11: Hybrid framework 

solving the hub assignment problem, the running time of OHHS-
Basic increases dramatically from 20 seconds (for 20 spoke pairs) 
to 77 minutes (for 150 spoke pairs). OHHS-Basic fails to fnd 
results for a problem with more than 150 spoke pairs due to the 
exponentially increased computational complexity. 

4.3 Comparison of Transit Models 

Figure 8(b)–(c) show the comparison between three different tran-
sit models, including public transit, private transit, and our hybrid 
hub-and-spoke models. As more trip demands being included, the 
results show clearly the trade-off between the three transit models, 
in terms of the average travel time (as a measure of passenger 
QoE) and the trip aggregation level (quantifying the operation 
cost): (i) Private transit model always achieves the lowest average 
travel time for trip demands, which is reasonable, since the private 
transit model takes the least travel time paths for trips. However, 
due to the low ride-sharing rate, the trip aggregation level is always 
the lowest comparing to other models, thus leads to high operation 
cost. (ii) On the other hand, by coordinating trip demands at a large 
number of bus stops and subway stations, public transit model 
always achieves the highest trip aggregation level than other transit 
models, thus signifcantly reduces the operation cost. However, 
high transition time incurred at stops and stations leads to the 
highest travel time, over other models. (iii) By allowing both 
hub-and-spoke and point-to-point connections, our hybrid hub-
and-spoke model can dedicate necessary point-to-point resources 
to high-volume spoke pairs, while aggregating low-volume spoke 
pairs via hubs. As a result, our hybrid hub-and-spoke model can 
achieve as low average travel time as private transit model, and as 
high trip aggregation level as public transit model. 

Fig. 12: Running time comparison 

4.4 Hybrid Hub-and-Spoke Planning 

Given the clear advantages of our hybrid hub-and-spoke model 
over the traditional private and public transit models, we now 
move on to evaluate our CityLines system (as a 2-step opti-
mization solution) by comparing it with baseline implementation 
algorithms. 
Step 1: Hub candidate selection. Figure 9(a)–(b) presents the 
comparison results on the hub coverage, between our OHS method 
and two baseline algorithms, including top selection and random 
selection. As we increase the number of hub candidates, Fig-
ure 9(a) shows that hub candidates selected by our OHS method 
always cover more trip demands than random selection, and top 
selection methods. when the total number of hub candidates to 
be selected is small, our OHS methods can select high quality 
hub candidates that cover up to 12 times more trip demands 
(about 6000 trip demands), than random selection method (about 
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Fig. 13: Case Studies 

500 trip demands). When the number of selected hub candidates 
is large, e.g., 10 hub candidates, the winning margin of our 
OHS (with about 8000 trip demands) is about 1.6 times over 
baseline algorithms (about 5000 trip demands). Consistent results 
(in Figure 9(b)) are obtained when we increase the number of 
spoke pairs. With 5 hubs for 300 spoke pairs, our OHS method 
can select hub candidates that covers twice trip demands (about 
7900 trip demands) of random selection method (about 3900 trip 
demands). When more spoke pairs are included (say, 700 spoke 
pairs), the hub candidates selected by our OHS method cover 9200 
trip demands, which is about 2.1 times hub coverage of random 
selection method (of 6100 trip demands). Overall, OHS method 
selects hub candidates with 1.6 to 12 times hub coverage than 
other baselines. 
Step 2: Trip assignment. Figure 10(a)–(b) show the comparison 
results between our optimal trip assignment (OTA) method with 
two baselines, including random assignment (RA) and average 
assignment (AA). To guarantee a fair comparison among different 
trip assignment methods, we use the same set of hub candidates 
selected in step 1 by OHS method. Figure 10(a) shows results in 
average travel time, where our OTA always achieves the lowest 
average travel time, with an average of 7%-31% reduction than 
other baselines. On the other hand, Figure 10(b) shows results 
in trip aggregation level: our OTA always has the highest trip 
aggregation level. Given 10 hubs and 5 direct paths, our OTA 
method has around 31–64 trips aggregated per trip segment, while 
baseline methods only have about 25–59 trips aggregated per trip 
segment, which leads to a total of 8%-24% improvement in trip 
aggregation (thus reduction in operation cost). 
Hybrid hub-and-spoke planning. Figure 11(a) shows that our 
OHHS framework always achieves the lowest average travel time 
with about 21 min, while other baseline methods lead to much 
higher average travel time ranging from 24 to 38 min. Thus, 
our framework achieves a total of 12.5% to 44% reduction on 
average travel time. When measuring the trip aggregation level 
(Figure 11(b)), our OHHS framework always has the highest num-
ber of aggregated trips, with a total of 8.5%–32.6% improvement 
over baseline algorithms. 

4.5 Case Studies 
Figure 13(a)–(c) show an example with real trip demands, which 
demonstrate the effectiveness of CityLines service by comparing 
it with private and public transit services. We extract a small 
set of trip demands during 6–11am in March 12, 2014, from 
Shenzhen, China. The trip demand set includes a total of 1,274 
trip demands with 5 source spokes and 5 destination spokes. One 
source-destination pair (from spoke A to A0) is with the highest 
trip demand volume, i.e., 473 trip demands. Moreover, each source 
(from B, C , D) has some trip demands (ranging within 58 – 118) 

to each destination (in B0 , C 0 , D0), and E has 77 trip demands 
to E0 . Figure 13(a)–(c) show the trip planning solutions using 
three transit models, including private transit, public transit, and 
CityLines service (with one hub and one direct path as the budget). 
Our results show that private transit and CityLines lead to similar 
average travel time, as 23 and 26 minutes, respectively, and public 
transit has 47 minutes average travel time due to the large number 
of stops and transfers during the trips. On the other hand, public 
transit and CityLines enable similarly high aggregation levels, 
with 168 and 155 aggregated demands per trip segment, where 
private transit leads to only 112 aggregated demands3, due to the 
distinct least travel time paths employed. 

5 SYSTEM DEPLOYMENT 

In this section, we describe the details of our deployed system. 

Fig. 14: System Interface. 

Our CityLines system is publicly available online [9], where 
the website user interface is implemented using bootstrap, Java, 
OpenStreetMap, and the system is deployed on a WPI server. 
Figure 14 is an example of the system interface. The system allows 
users to interact with it using different parameters to obtain hub-
and-spoke network recommendations in a real-time fashion. The 
interface contains the following components: 

Parameters. In the system interface (as shown in Figure 14), 
there are a few parameters that allow users to choose the desired 
deployment settings, such as the time interval of interests (in each 
two hours of a day), total number of hubs (L) and number of 
directed paths (M ) to deploy. Once the user defnes and chooses 
those parameters and presses the button “Generate”, the planned 
hub-and-spoke network will be displayed. Moreover, to achieve 

3. Note that the aggregation level of private transits is calculated without 
considering vehicle capacity. When using taxis, the aggregation level is up to 
4, i.e., taxi capacity. 
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better visualizations for the project, we also developed a drop-
down menu to the right of the “Generate” button, with which 
users can choose the background color patterns: auto-change, the 
background color will change based on the time interval a user 
chooses; day-time, bright white background color all the time; 
night-time, dark grey background color all the time. 

Result. On the right hand side of the demo page, the planned 
hub-and-spoke network will be shown, with red dots representing 
the planned hub station locations, and green dots representing the 
source and destination spokes to be served by directed paths. The 
red paths highlighted between the source and destination spokes 
are the direct path routes. 

Data and Code Sharing: We also make our code and (a subset 
of) data publicly available on the project webpage [10]. We believe 
that this will not only allow other researchers to repeat and validate 
our results, but also facilitate the research community. 

6 RELATED WORK 

To the best of our knowledge, we are the frst to investigate hybrid 
hub-and-spoke transit model in solving urban transit planning 
problem. We discuss two closely related topics to our work: 
(1)urban computing and (2) hub-and-spoke network planning. 
Urban computing integrates urban sensing, data management and 
data analytic together as a unifed process to explore, analyze 
and solve existing critical problems in urban area such as traffc 
congestion, energy consumption and pollution [23]. For example, 
by analyzing a large-scale real electric taxi trajectory dataset, 
authors in [15], [24] develop scalable charging station placement 
strategies to reduce seeking and waiting time for electric vehicles 
in urban areas. In [25], [26], the authors developed novel models 
to predict the road traffc and crowd fows in subway stations. 
However, none of the existing work addresses the fundamental 
transit planning problem by employing the novel hybrid hub-and-
spoke transit model. Our study shed lights on the opportunity of 
transforming the urban transit model to provide higher quality of 
services to passengers. 
Hub-and-spoke network planning has been extensively studied 
in the literature, where all trip demands need to be detoured 
via hubs to their destination spokes [17]. [27], [28] all attempt 
to address a single allocation hub-and-spoke problem, where 
multiple hubs are deployed, but all trips from the same spoke have 
to detour at the same hub. [3], [29] develop solutions to multiple 
allocation hub-and-spoke problem, where trips from the same 
spoke, with different destination can potentially employ different 
hubs for detour. However, few works have addressed the hybrid 
hub-and-spoke network planning by allowing both point-to-point 
and hub-and-spoke services. Moreover, the existing solutions can 
only solve a hub-and-spoke problem with limited scale, say, 200 
spokes and 10 hubs, which is not applicable to large-scale urban 
trip planning scenarios. Our CityLines system design aims to 
fundamentally address these two challenges to develop a scalable 
trip planning service with low system operation cost, and high 
passenger QoE. 

7 CONCLUSION 

In this paper, we make the frst attempt to develop CityLines sys-
tem for urban scale transportation services, that employs a hybrid 
hub-and-spoke transit model. The model allows both point-to-
point connection to improve the passenger quality of experience, 

and hub-and-spoke connection to reduce the system operation cost. 
CityLines employs a two-step optimization framework to enable a 
scalable solution to the optimal hybrid hub-and-spoke planning 
problem. Comparing with other implementation baselines, the 
evaluation results (obtained with real world transit data) demon-
strate that CityLines reduces 12.5%-44% average travel time, and 
aggregates 8.5%-32.6% more trips with ride-sharing. 
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