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Abstract 

We frst present a comprehensive review of various random walk metrics used 
in the literature and express them in a consistent framework. We then intro-
duce fundamental tensor – a generalization of the well-known fundamental 
matrix – and show that classical random walk metrics can be derived from 
it in a unifed manner. We provide a collection of useful relations for ran-
dom walk metrics that are useful and insightful for network studies. To 
demonstrate the usefulness and eÿcacy of the proposed fundamental tensor 
in network analysis, we present four important applications: 1) unifcation 
of network centrality measures, 2) characterization of (generalized) network 
articulation points, 3) identifcation of network most infuential nodes, and 
4) fast computation of network reachability after failures. 

Keywords: Markov chain, random walk, fundamental tensor, network 
analysis, centrality measures, articulation points, infuence maximization, 
network reachability 

1. Introduction 

Random walk and Markov chain theory, which are in close relationship, 
shown to be powerful tools in many felds from physics and chemistry to 
social sciences, economics, and computer science [1, 2, 3, 4, 5]. For network 
analysis, too, they have shown promises as e˙ective tools [6, 7, 8, 9], where the 
hitting time, a well-known Markov metric, is used to measure the distance (or 
similarity) between di˙erent parts of a network and provide more insight to 
structural properties of the network. We believe though that the applicability 
of Markov chain theory to network analysis is more extensive and is not 
restricted to using the hitting time. Markov chain theory enables us to 
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provide more general solutions which cover the directed networks (digraphs) 
and is not tailored only to special case of undirected networks. 

In this paper, we revisit the fundamental matrix in Markov chain theory 
[10], extend it to a more general form of tensor representation, which we call 
fundamental tensor, and use that to tackle four interesting network analysis 
applications. Fundamental tensor F smt is defned 1 over three dimensions of 
source node s, middle (medial) node m, and target node t, which represents 
the expected number of times that the Markov chain visits node m when 
started from s and before hitting t for the frst time. We show that the 
entire fundamental tensor can be computed by a single matrix inversion, 
which is much more eÿcient than computing the fundamental matrices for 
each target node separately (O(n3) vs. O(n4)). 

As the frst application, we show that the fundamental tensor provides 
a unifed way to compute the random walk distance (hitting time), ran-
dom walk betweenness measure [11], random walk closeness measure [12], 
and random walk topological index (Kirchho˙ index)[13] in a conceptual 
and insightful framework: hitting time distance as the aggregation of the 
fundamental tensor over the middle node dimension, betweenness as the ag-
gregation over the source and target nodes, closeness as the aggregation over 
the source and middle node dimensions, and Kirchho˙ index resulted as the 
aggregation over all the three dimensions. These four random walk measures 
are of well-known network analysis tools which have been vastly used in the 
literature [14, 15, 16, 17, 18, 19]. 

In the second application, we extend the defnition of articulation points 
to the directed networks which has been originally defned for undirected 
networks, known as cut vertices as well. We show that the (normalized) fun-
damental tensor nicely functions as a look up table to fnd all the articulation 
points of a directed network. Founded on the notion of articulation points, 
we also propose a load balancing measure for the networks. Load balanc-
ing is important for network robustness against targeted attacks, where the 
balance in the loads help the network to show more resilience toward the 
failures. Through extensive experiments, we evaluate the load balancing in 
several specifc-shaped networks and real-world networks. 

1Note that the fundamental matrix is mostly denoted by N in Markov chain theory 
literature, but since N might refect other meanings in computer science venues, we usually 
use F (or F to denote the tensor) in our papers. 
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The applicability and eÿciency of the fundamental tensor in social net-
works is the subject of the third application in this paper. We show that the 
(normalized) fundamental tensor can be used in the feld of social networks 
to infer the cascade and spread of a phenomena or an infuence in a network 
and derive a formulation to fnd the most infuential nodes for maximizing the 
infuence spread over the network. While the original problem is NP-hard, 
we propose a greedy algorithm which yields a provably near-optimal solution. 
We show that this algorithm outperforms the state-of-the-art as well as the 
centrality/importance measure baselines in maximizing the infuence spread 
in the network. 

Since it is ineÿcient to use the regular reachability methods in large and 
dense networks with high volume of reachability queries whenever a failure 
occurs in the network, devising an eÿcient dynamic reachability method is 
necessary in such cases. As the fourth application, we present a dynamic 
reachability method in the form of a pre-computed oracle which is cable of 
answering to reachability queries eÿciently (O(1)) both in the case of having 
failures or no failure in a general directed network. This pre-computed oracle 
is in fact the fundamental matrix computed for the extended network Go and 
target o. The eÿciency of the algorithm is resulted from the theorem that we 
prove on incremental computation of the fundamental tensor when a failure 
happens in the network. The storage requirement of this oracle is only O(n2). 
Note that in the last two applications, the directed network G does not need 
to be strongly connected, and our algorithms can be applied to any general 
network. 

For the sake of completeness, we also provide a comprehensive review 
of the other Markov metrics, such as hitting time, absorption probability, 
and hitting cost, which is a very useful metric for weighted networks and 
was introduced in a more recent literature [19], but can be rarely found in 
Markov chain literature. In the review, we include Markov metrics’ various 
defnitions and formulations, and express them in a consistent form (matrix 
form, recursive form, and stochastic form). We also show that the fundamen-
tal tensor provides a basis for computing these Markov metrics in a unifed 
manner. In addition, we review, gather, and derive many insightful relations 
for the Markov metrics. 

The remainder of this paper is organized as follows. A preliminary on 
network terminology is presented in Section 2. In Section 3, we review and 
present various Markov metrics in a unifed format. In Section 4, we gather 
and derive useful relations among the reviewed Markov metrics. Finally, 
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four applications are presented in Sections 5, 6, 7, and 8 to demonstrate the 
usefulness and eÿcacy of the fundamental tensor in network analysis. 

2. Preliminaries 

In general, a network can be abstractly modeled as a weighted and directed 
graph, denoted by G = (V , E ,W ). Here V is the set of nodes in the network 
such as routers or switches in a communication network or users in a social 
network, and its size is assumed to be n throughout the paper |V| = n; E is 
the set of (directed) edges representing the (physical or logical) connections 
between nodes (e.g., a communication link from a node i to a node j) or entity 
relations (e.g., follower-followee relation between two users). The aÿnity (or 
adjacency) matrix A = [aij ] is assumed to be nonnegative, i.e., aij ≥ 0, where 
aij > 0 if and only if edge eij exists, eij ∈ E . The weight (or cost) matrix 
W = [wij ] represents the costs assigned to edges in a weighted network. 
Network G is called strongly connected if all nodes can be reachable from 
each other via at least one path. In this paper, we focus on strongly connected 
networks, unless stated otherwise. 

A random walk in G is modeled by a discrete time Markov chain, where 
the nodes of G represent the states of the Markov chain. The target node 
in the network is modeled by an absorbing state at which the random walk 
arrives it cannot leave anymore. The Markov chain is fully described by its 
transition probability matrix: P = D−1A, where D is the diagonal matrixP 
of (out-)degrees, i.e., D = diag[di] and di = j aij . The di is often referred 
to as the (out-)degree of node i. Throughout the paper, the words “node" 
and “state", “network" and “Markov chain" are often used interchangeably 
depending on the context. If the network G is strongly connected, the as-
sociated Markov chain is irreducible and the stationary probabilities π are 
strictly positive according to Perron-Frobenius theorem [20]. For an undi-
rected and connected G, the associated Markov chain is reversible and the 
stationary probabilities are a scalar multiple of node degrees: πi = Pd 

i

i 
di 
. 

3. Defnitions of Markov Metrics 

We review various Markov metrics and present them using three unifed 
forms: 1) matrix form (and in terms of the fundamental matrix), 2) recursive 
form, and 3) stochastic form. The matrix form is often the preferred form 
in this paper and we show how two other forms can be obtained from the 
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matrix form. The stochastic form, however, provides a more intuitive def-
nition of random walk metrics. We also introduce fundamental tensor as a 
generalization of the fundamental matrix and show how it can be computed 
eÿciently. 

3.1. Fundamental Matrix 
The expected number of visits counts the expected number of visits at a 

node, when a random walk starts from a source node and before a stopping 
criterion. The stopping criterion in random walk (or Markov) metrics is often 
“visiting a target node for the frst time” which is referred to as hitting the 
target node. Fundamental matrix F is formed for a specifc target node, 
where the entries are the expected number of visits at a medial node starting 
from a source node, for all such pairs. In the following, the fundamental 
matrix is defned formally using three di˙erent forms. 2 

• Matrix form [22, 10]: Let P be an n × n transition probability 
matrix for a strongly connected network G and node n be the target 
node. If the nodes are arranged in a way to assign the last index to the 
target node, transition probability matrix can be written in the form� � 

P11 p12of P = 0 and the fundamental matrix is defned as follows: 
p21 pnn 

F = (I − P11)
−1 , (1) 

where entry Fsm represents the expected number of visits of medial 
node m, starting from source node s, and before hitting (or absorption 
by) target node n [10]. Note that the target node can be any node t 
which would be specifed in the notation by F {t} to clarify that it is 

2Note that there exists another fundamental matrix Z = (I − P + 1π0)−1 in literature 
as well which is defned for ergodic Markov chain and is shown [21] to be eÿcient for 
computing some Markov metrics such as hitting time. However, the fundamental matrix 
F = (I − P11)

−1 , which is defned for absorbing Markov chain, is of special interest of the 
authors of this paper due to: 1- It is nicely interpretable in terms of random walk and 
is conceptually interesting as aggregation over the fundamental tensor dimensions would 
result to di˙erent Markov metrics (Section 5) and the articulation points of a network 
can be directly found from it (Section 6), 2- It can be used for both applications that 
are represented by ergodic chain (Sections 5 and 6) and absorbing chain (Sections 7 and 
8), 3- It is easily generalizable to absorbing Markov chain with multiple absorbing states 
(Section 3.6) which we use to model network applications with multiple target nodes. 
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computed for target node t. This is discussed more in Markov metrics 
generalization to a set of targets (3.6). 

Expanding Fsm as a geometric series, namely, Fsm = [(I − P11)
−1]sm = 

[I]sm +[P11]sm +[P11
2 ]sm + ..., it is easy to see the probabilistic interpre-

tation of the expected number of visits as a summation over the number 
of steps required to visit node m. 

• Recursive form: Each entry of the fundamental matrix, Fsm, can be 
recursively computed in terms of the entries of s’s outgoing neighbors. 
Note that if s = m, Fsm is increased by 1 to account for X0 = m (the 
random walk starts at s = m, thus counting as the frst visit at m). X 

Fsm = 1{s=m} + psj Fjm (2) 
j∈Nout(s) 

It is easy to see the direct connection between the recursive form and 
the matrix form: from F = I + P11F , we have F = (I − P11)

−1 . 

• Stochastic form [23]: Let G = (Xk)k>0 be a discrete-time Markov 
chain with the transition probability matrix P , where Xk is the state 
of Markov chain in time step k. The indicator function 1{Xk =m} is a 
Bernoulli random variable, equal to 1 if the state of Markov chain is m 
at time k, i.e. Xk = m, and 0 otherwise. The number of visits of node 
m, denoted by νm, can be written in terms of the indicator function:P∞νm = k=0 1{Xk =m}. The stopping criteria is hitting target node t for 
the frst time. In an irreducible chain, this event is guaranteed to occur 
in a fnite time. Hence k < ∞. Fsm is defned as the expected value of 
νm starting from s. 

<∞ <∞X X 
Fsm = Es(νm) = Es 1{Xk =m} = Es(1{Xk =m}) 

k=0 k=0 
<∞ <∞X X 

= P(Xk = m|X0 = s, X<k 6= t) = [P11 
k ] , (3)sm 

k=0 k=0 

where the expression is simply the expanded version of the matrix form. 
Note that in order for Fsm to be fnite (namely, the infnite summation 
converges), it is suÿcient that node t be reachable from all other nodes 
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in network. In other words, the irreducibility of the entire network is 
not necessary. 

3.2. Fundamental Tensor 
We defne the fundamental tensor, F , as a generalization of the funda-

mental matrix F {t}, which looks to be formed by stacking up the fundamental 
matrices constructed for each node t as the target node in a strongly con-
nected network (Eq.(4)), but is in fact computed much more eÿciently. In 
Theorem (1), we show that the whole fundamental tensor can be computed 
from Moore-Penrose pseudo-inverse of Laplacian matrix with only O(n3) of 
complexity and there is no need to compute the fundamental matrices for 
every target node which require O(n4) of computation in total. ( 

{t}
Fsm if s, m =6 t 

F smt = (4)
0 if s = t or m = t 

Fundamental tensor is presented in three dimensions of source node, medial 
(middle) node, and target node (Fig. (1)). 

3.3. Hitting Time 
The (expected) hitting time metric, also known as the frst transit time, 

frst passage time, and expected absorption time in the literature, counts 
the expected number of steps (or time) required to hit a target node for the 
frst time when the random walk starts from a source node. Hitting time is 
frequently used in the literature as a form of (random walk) distance metric 
for network analysis. We formally present it in three di˙erent forms below. 

• Matrix form [10]: Hitting time can be computed from the fundamen-
tal matrix (1) as follows: 

h{t} = F {t}1, (5) 

{t}where 1 is a vector of all ones and h{t} is a vector of Hs computed for 
all s ∈ V \ {t}. H{t} represents the expected number of steps required s P{t} {t}to hit node t starting from s and is obtained from: Hs = m Fsm . 
The intuition behind this formulation is that enumerating the average 
number of nodes visited on the way from the source node to the target 
node yields the number of steps (distance) required to reach to the 
target node. 
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{t}• Recursive form [21, 23, 19]: The recursive form of Hs is the most 
well-known form presented in the literature for deriving the hitting 
time: X 

H{t} H{t}
s = 1 + psm m (6) 

m∈Nout(s) 

It is easy to see the direct connection between the recursive form and 
the matrix form: from h = 1 + P11h, we have h = (I − P11)

−11. 

• Stochastic form [23]: Let G = (Xk)k>0 be a discrete-time Markov 
chain with the transition probability matrix P . The hitting time of the 
target node t is denoted by a random variable κt : Ω → {0, 1, 2, ...} ∪ 
{∞} given by κt = inf {κ ≥ 0 : Xκ = t}, where by convention the in-
fmum of the empty set ∅ is ∞. Assuming that the target node t is 
reachable from all the other nodes in the network, we have κt < ∞. 
The (expected) hitting time from s to t is then given by 

<∞X 
H{t} = Es[κt] = kP(κt = k|X0 = s) + ∞P(κt = ∞|X0 = s)s 

k=1 
<∞X 

= kP(Xk = t|X0 = s, X<k 6= t) 
k=1 
<∞X X 

= k P(Xk−1 = m|X0 = s, X<k−1 6= t) · P(Xk = t|Xk−1 = m) 
k=1 m6=t 

<∞X X 
= k [P11 

k−1]sm[p12]m, (7) 
k=1 m6=t 

where [P11
0 ]sm = 1 for m = s and it is 0 otherwise. The connection 

between the stochastic form and the matrix form can be found in the 
appendix. 

3.3.1. Commute Time 
The commute time between node i and node j is defned as the sum of 

the hitting time from i to j and the hitting time from j to i: 
{j} {i}

= H + H (8)Cij i j 

Clearly, commute time is a symmetric quantity, i.e., Cij = Cji. In contrast, 
hitting time is in general not symmetric, even when the network is undirected. 
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3.4. Hitting Cost 
The (expected) hitting cost, also known as average frst-passage cost in 

the literature, generalizes the (expected) hitting time by assigning a cost to 
{t}each transition. Hitting cost from s to t, denoted by IHs , is the average 

cost incurred by the random walk starting from node s to hit node t for the 
frst time. The cost of transiting edge eij is given by wij . The hitting cost 
was frst introduced by Fouss et al. [19] and given in a recursive form. In 
the following, we frst provide a rigorous defnition for hitting cost in the 
stochastic form, and then show how the matrix form and recursive form can 
be driven from this defnition. 

• Stochastic form: Let G = (Xk)k>0 be a discrete-time Markov chain 
with the transition probability matrix P and cost matrix W . The 
hitting cost of the target node t is a random variable ηt : Ω → C which 
is defned by ηt = inf {η ≥ 0 : ∃k, Xk = t, 

Pk = η}. C is ai=1 wXi−1Xi 

countable set. If we view wij as the length of edge (link) eij , then the 
hitting cost ηt is the total length of steps that the random walk takes 
until it hits t for the frst time. The expected value of ηt when the 
random walk starts at node s is given by X 

IHs
{t} = Es[ηt] = lP(ηt = l|X0 = s) (9) 

l∈C 

For compactness, we delegate the more detailed derivation of the stochas-
tic form and its connection with the matrix form to the appendix. 

• Matrix form: Hitting cost can be computed from the following closed 
form formulation: 

lh{t} = F r, (10) 

where r is the vector of expected outgoing costs and lh{t} is a vector of 
IHs
{t} computed for all s ∈ V \ {t}. The expected outgoing cost of node P 

s is obtained from: rs = psmwsm. Note that the hittingm∈Nout(s) 
time matrix H in Eq.(5) is a special case of the hitting cost matrix IH, 
obtained when wij = 1 for all eij . 

{t}• Recursive form [19]: The recursive computation of IHs is given as 
follows: X 

IHs
{t} = rs + psmIHm

{t}. (11) 
m∈Nout(s) 
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It is easy to see the direct connection between the recursive form and 
the matrix form: from lh = r + P11lh, we have lh = (I − P11)

−1r. 

3.4.1. Commute Cost 
Commute cost Cij is defned as the expected cost required to hit j for the 

frst time and get back to i. As in the case of commute time, commute cost 
is a symmetric metric and is given by 

{j} {i}Cij = IHi + IHj (12) 

3.5. Absorption Probability 
The absorption probability, also known as hitting probability in the liter-

ature, is the probability of hitting or getting absorbed by a target node (or 
any node in a set of target nodes) in a fnite time [23]. For a single target 
node, this probability is trivially equal to 1 for all nodes in a strongly con-
nected network. We therefore consider more than one target nodes in this 
paper. 

Let indexes n − 1 and n be assigned to two target nodes in a strongly 
connected network. We partition the transition probability matrix P as 
follows: 

n − 1 n" #P11 p12 p13 
0p (13)P = 
21 pn−1,n−1 pn−1,n n − 1 
0p31 pn,n−1 pn,n n 

where P11 is an (n − 2) × (n − 2) matrix, p12, p13, p21, and p31 are (n − 2) × 1 
vectors, and the rest are scalars. The corresponding absorption probability 
can be expressed in three forms as follows: 

• Matrix form [10]: The absorption probability matrix denoted by 
Q is a (n − 2) × 2 matrix whose columns represent the absorption 
probabilities to target n − 1 and n respectively: 

Q{n−1,n} = F p12, (14) 
Q{n−1,n} = F p13, (15) 
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where F = (I − P11)
−1 . The notation Q{n−1,n} emphasizes that target 

n−1 is hit sooner than target n, and Q{n−1,n} indicates hitting target n 
occurs sooner than target n − 1. The formulation above states that to 
obtain the probability of getting absorbed (hit) by a given target when 
starting a random walk from a source node, we add up the absorption 
probabilities of starting from the neighbors of the source node, weighted 
by the number of times we expect to be in those neighboring nodes [10]. 
For a strongly connected network, these two probabilities are sum up 

{n−1,n} {n−1,n}to 1 for each starting node s, i.e., Qs + Qs = 1. 

• Recursive form [23]: For each of the target nodes, the absorption 
probability starting from any source node can be found from the ab-
sorption probabilities starting from its neighbors: X 

Q{n−1,n} Q{n−1,n}s = psm m , (16) 
m∈Nout(s)X 

Q{n−1,n} Q{n−1,n}s = psm m , (17) 
m∈Nout(s) 

where s, m ∈ V \{n − 1, n}. Note that the neighbors of a node can also 
be the target nodes. Thus, the right-hand side of the above equations 

{n−1,n} P {n−1,n}is decomposed into two parts: Q + Q ,s = psn m6=n,n−1 psm m 
{n−1,n}and the same way for Qs . Now, it is easy to see how the re-

cursive form is connected to the matrix form: from Q{n−1,n} = p13 + 
P11Q

{n−1,n}, we have Q{n−1,n} = (I − P11)
−1p13. 

• Stochastic form [23]: Let G = (Xk)k>0 be a discrete-time Markov 
chain with the transition matrix P . The hitting time of the target state 
n before n − 1 is denoted by a random variable κn : Ω → {0, 1, 2, ...} ∪ 
{∞} given by κn = inf {κ ≥ 0 : Xκ = n, Xk<κ 6= n, n − 1}. Then the 
probability of ever hitting n is P(κn < ∞) [23]. This can be derived as 
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follows: 
<∞X 

Q{n−1,n}s = P(κn = k|X0 = s) 
k=1 
<∞X 

= P(Xk = n|X0 = s, X<k 6= n, n − 1) 
k=1 
<∞X X 

= P(Xk−1 = m|X0 = s, X<k−1 6= n, n − 1) · 
k=1 m6=n,n−1 

P(Xk = n|Xk−1 = m) 
<∞XX 

= [P k−1] [p13]m11 sm 
k=1 mX 

= [(I − P11)
−1] . (18)sm[p13]m 

m 

{n−1,n}The stochastic form for Qs is derived in a similar vein. 

3.6. Generalization: Markov Metrics for a Set of Targets 
Let A = {t1, ..., t|A|} be a set of target nodes. Then the transition prob-

ability matrix can be written in the following form:� � 
PT T PT A P = , (19)
PAT PAA 

where T = V \ A is the set of non-target nodes. Note that set of target 
nodes A can be modeled as the set of absorbing states in a Markov chain, 
and then T = V \ A is the set of transient (non-absorbing) nodes. Since 
hitting the target nodes is the stopping criterion for all the Markov metrics 
we have reviewed so far, it does not matter where the random walk can go 
afterwards and what the outgoing edges of the target nodes are. Therefore,� � � � 

PT T PT A PT T PT A there is no di˙erence between P = and P = 
PAT PAA 0 I 

for computing the Markov metrics. 
For a given set of target nodes A, the fundamental matrix F A is obtained 

using the following relation: 
<∞X 

F A = I + P k , (20)T T = (I − PT T )
−1 

k=1 

12 



which is a general form of the fundamental matrix defned for a single target 
(Eq.(1)). Entry F A represents the expected number of visits to m before sm 

hitting any of the target nodes in A when starting a random walk from s. 
A hitting time for A is defned as the expected number of steps to hit the 

set for the frst time which can occur by hitting any of the target nodes in 
this set. The vector of hitting times with respect to a target set T can be 
computed using 

hA = F A1 (21) 

If there exists a matrix of costs W defned for the network, the hitting 
cost for target set A is given below 

lhA = F A r, (22) P 
where r is a vector of expected outgoing cost rs’s: rs = psmwsm. m∈Nout(s) 

The absorption probability of target set A is a |T | × |A| matrix whose 
columns represents the absorption probability for each target node if it gets 
hit sooner than the other target nodes: 

QA = F APT A, (23) 

where QA is a row-stochastic matrix for a strongly connected network. 
We remark that if the network is not strongly connected (thus the corre-

sponding Markov chain is not irreducible), I − PT T may not be non-singular 
for every set of A. Hence F A may not exist. The necessary and suÿcient 
condition for the existence of F A is that target set A includes at least one 
node from each recurrent equivalence class in the network. The recurrent 
equivalence class is the minimal set of nodes that have no outgoing edge to 
nodes outside the set. Once a random walk reaches a node in a recurrent 
equivalence class, it can no longer get out of that set. A recurrent equivalence 
class can be as small as one single node, which is called an absorbing node. 

4. Useful Relations for Markov Metrics 

In this section, we frst establish several important theorems, and then 
gather and derive a number of useful relations among the Markov metrics. 
We start by relating the fundamental tensor with the Laplacian matrices of a 
general network. For an undirected network or graph G, the graph Laplacian 
Lu = D − A (where A is the adjacent matrix of G and D = diag[di] is the 
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1 
2

1 
2 diagonal matrix of node degrees) and its normalized version L̃u = D− LD− 

have been widely studied and found many applications (see, e.g., [24] and 
the references therein). In particular, it is well-known that commute times 
are closely related to the Penrose-Moore pseudo-inverse of Lu (and a variant 
of Eq.(24) also holds for L̃u): 

= Lu,+ + Lu,+ − Lu,+ − Lu,+Cij ii jj ij ji . (24) 

Li and Zhang [25, 26, 27] were frst to introduce the (correct) generaliza-
tion of graph Laplacians for directed networks/graphs (digraphs) using the 
stationary distribution {πi} of the transition matrix P = D−1A for the asso-
ciated (random walk) Markov chain defned on a directed network G. For a 
strongly connected network G, its normalized digraph Laplacian is defned as 
L̃ = Π 

11 
(I − P )Π− , where Π = diag[πi] is the diagonal matrix of stationary 2 2 

probabilities. Li and Zhang proved that the hitting time and commute time 
can be computed from the Moore-Penrose pseudo-inverse L̃+ of L̃ using the 
following relations: 

L̃+ L̃+ 
{j} jj ij

Hi = − √ (25)
πj πiπj 

and 
L̃+ L̃+ L̃+ L̃+ 

{j} {i} ii jj ij ji 
Cij = Hi + Hj = + − √ − √ . (26)

πi πj πiπj πiπj 

We defne the (unnormalized) digraph Laplacian for a general (directed 
or undirected) network G as L = Π(I − P ) and the random walk Laplacian 
as Lp = I − P . Clearly, L̃ = Π−

1 
2LΠ−

11 
LpΠ−

1 
2 . Note that for aPΠ2 = 2 

(connected) undirected graph, as πi = di where vol(G) = dj , we seevol(G) j 

that the classical graph Laplacian Lu = D −A = vol(G)L. Any results which 
hold for L also hold for Lu = D − A with a scalar multiple. In the following 
we relate the fundamental tensor to the digraph and random walk Laplacians 
L and Lp, and use this relation to establish similar expressions for computing 
hitting and commute times using L, analogous to Eqs.(25) and (26). � � 

L11 l12Lemma 1 ([28]). Let be an n × n irreducible matrix such that 
l0 21 lnn 

nullity(L) = 1. Let M = L+ be the Moore-Penrose pseudo-inverse of L 
partitioned similarly and (u0 , 1)L = 0, L(v; 1) = 0, where u and v are (n−1)-
dim column vectors, u0 is the transpose of the column vector u ((u0 , 1) is a 
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n-dim row vector and (v; 1) is a n-dim column vector, a la MATLAB). Then 
the inverse of the (n − 1) × (n − 1) matrix L11 exists and is given by: 

L−1 
11 = (I + vv 0)M11(I + uu 0), (27) 

where I denotes the (n − 1) × (n − 1) identity matrix. 

Note that node n in the above lemma can be substituted by any other 
node (index). 

Theorem 1. The fundamental tensor can be computed from the Moore-
Penrose pseudo-inverse of the digraph Laplacian matrix L = Π(I − P ) as 
well as the random walk Laplacian matrix Lp = I − P as follows, which 
results to O(n3) time complexity: 

F smt = (Lsm 
+ − Ltm 

+ + Ltt 
+ − Lst 

+)πm, (28) 

πm πm
F smt = Lp

sm 
+ − Lp+ + Lp+ − Lp+ (29)tm tt st,πt πt 

where πi is the stationary probability of node i and Π is a diagonal matrix 
whose i-th diagonal entry is equal to πi. 

Proof. Note that F = L−1 as in Lemma 1. The above equations = (I −P11)
−1 

11 

follow from Lemma 1 with v = u = 1. The nullity of matrix Lp = I − P for 
a strongly connected network is 1. Using Eq.(28) or (29), all n3 entries of the 
fundamental tensor F can be computed from L+ in constant time each. 

Corollary 1. X 
F smt = cπm, (30) 

s,t 

where c is a constant independent of m. 

Proof. X X 
F smt = (Lsm 

+ − Ltm 
+ − Lst 

+ + Ltt 
+)πm (31) 

s,t s,t X 
= 0 − 0 − 0 + (n L+ 

tt )πm (32) 
t 

= cπm, (33) 

where the second equality follows from the fact that the column sum of 
L+ = (Π(I − P ))+ is zero. Later in Section 5, we will show that c = |E|K, 
where K is the Kirchho˙ index of a network. 
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Corollary 2. Hitting time and commute time can also be expressed in terms 
of entries in the digraph Laplacian matrix L = Π(I − P ) [27]: X {j}

H = (L+ − L+ )πm + L+ − L+ (34)i im jm jj ij, 
m 

= L+ − L+ − L+Cij ii + Ljj 
+ 

ij ji, (35) 

Proof. Use Eq.(5) and (28). 

Note that we can also write the metrics in terms of the random walk 
Lp+ Lp+ 

im ijLaplacian matrix Lp by a simple substitution: L+ − L+ = − .im ij πm πj 

Corollary 3. Hitting cost IH and commute cost C can be expressed in terms 
of the digraph Laplacian matrix L = Π(I − P ): X 

IHij = (L+ 
im − L+ 

jm + L+ 
jj − L+ 

ij )gm, (36) 
m X 

Cij = (L
+ − L+ − L+) gm, (37)im jm + L+ 

jj ij P 
m 

where gm = rmπm and rm = pmkwmk.k∈Nout(m) 

Proof. Use Eq.(10) and (28). From Eq.(35) and (37), it is also interesting to 
note that commute cost is a multiple scalar of commute time. 

Lemma 2 ([28]). Let C be an n × n non-singular matrix and suppose A = 
C − uv0 is singular. Then the Moore-Penrose pseudo-inverse of A is given 
as: 0 0 

A+ = (I − 
xx 
0 )C

−1(I − 
yy 
0 ), (38)

x x y y 

where x = C−1u, y0 = v0C−1 . 

Theorem 2. For an ergodic Markov chain, the Moore-Penrose pseudo-inverse 
of random-walk Laplacian Lp+ can be computed from fundamental matrix 
Z = (I − P + 1π0)−1 [21] as follows: 

Z110Z 0 Z 0ππ0Z 
Lp+ = (I − )Z(I − ), (39)

10Z 0Z1 π0ZZ 0π 

where 1 is a vector of all 1’s and π denotes the vector of stationary proba-
bilities. 
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Proof. The theorem is a direct result of applying Lemma 2. 

Theorem 2 along with Theorem 1 reveal the relation between the fun-
damental matrices F and Z. They also show that the fundamental tensor 
F can be computed by a single matrix inverse, can it be either a Moore-
Penrose pseudo-inverse or a regular matrix inverse, as Lp+ in Eq. (29) can 
be computed by either operating the pseudo-inverse on Lp or using Eq. (39). 
Discussion on computing Markov metrics via the group inverse can be found 
in [29, 30]. 

Theorem 3 (Incremental Computation of the Fundamental Matrix). The 
fundamental matrix for target set S1 ∪ S2 can be computed from the funda-
mental matrix for target set S1 as follows, 

F S1∪S2 = F S1 − F S1 [F S1 ]−1F S1 , (40)im im iS2 S2S2 S2m 

where Fi 
S
S 
1

2 
denotes the row corresponding to node i and the columns corre-

sponding to set S2 of the fundamental matrix F S1 , and the (sub-)matrices 
F S1 and F S1 are similarly defned. S2S2 S2m 

Proof. Consider the matrix M = I − PT T , where the absorbing set is A = S1 

and the transient set T = V \ S1. The inverse of M yields the fundamental 
matrix F S1 , and the inverse of its sub-matrix obtained from removing rows 
and columns corresponding to set S2 yields the fundamental matrix F S1∪S2 . 
Using the following equations from the Schur complement, we see that the 
inverse of a sub-matrix can be derived from that of the original matrix.� � 

If A is invertible, we can factor the matrix M = 
A B as follows 
C D � � � � � � 

A B I 0 A B 
= (41)

C D CA−1 I 0 D − CA−1B 

Inverting both sides of the equation yields � 
A 
C 

B 
D 

�−1 

= 

= 

� 

� 

� 

� � � 
A−1 −A−1BS−1 I 0 

S−10 −CA−1 I 

A−1 + A−1BS−1CA−1 −A−1BS−1 

S−1−S−1CA−1 � 

� 
(42) 

(43) 

= 
X 
Z 

Y 
W 

, (44) 
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where S = D − CA−1B. Therefore, A−1 can be computed from A−1 = 
X − YW −1Z. 

Corollary 4. The simplifed form of Theorem 3 for a single target is given 
by 

{j} {j}
{j,k} {j} Fik Fk,m 

F = F − (45)im im {j}
Fk,k 

Lemma 3. 
PT T F A = F APT T = F A , (46) 

where T ∪ A = V 

Proof. It follows easily from Eq.(1). 

Corollary 5 (Another Recursive Form for the Fundamental Matrix). 

{j} 

(P 
Fik
{j}

pkm if i =6 mk∈Nin(m)Fim = P {j} (47)
1 + F pkm if i = mk∈Nin(m) ik 

Proof. It is a special case of Lemma 3. Note that the recursive relation in 
Eq.(2) is in terms of s’s outgoing neighbors, while this one is in terms of 
incoming neighbors of m. 

Theorem 4 (Absorption Probability & Normalized Fundamental Matrix). 
The absorption probability of a target node j in an absorbing set A = {j}∪S 
can be written in terms of the normalized fundamental matrix F S , where the 
columns are normalized by the diagonal entries: 

F S 

QA ij 
ij = 

F S (48) 
jj 
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Proof. 

QA 
ij = [F APT A]ij (49)X 

F A = impmj 

m∈T X F S 
jm ij F S 

= (F S −im )pmj
F S 
jj m∈T X F S X 

= impmj − ij 
jmpmjF S F S 

F S 
jj m∈T m∈T 

F S 

= Fij 
S − 

F 
ij 
S (Fjj 

S − 1) 
jj 

F S 
ij

= ,
F S 
jj 

where the third and ffth equalities follow directly from of Theorem 3 and 
Lemma 3, respectively. 

We are now in a position to gather and derive a number of useful relations 
among the random walk metrics. 

Relation 1 (Complementary relation of absorption probabilities). X 
QA 

ij = 1 − QA 
ik, (50) 

k∈A\{j} 

where i ∈ T and j ∈ A. 
Proof. Based on the defnition of Q and the assumption that all the nodes 
in T are transient, the probability that a random walk eventually ends up in 
set A is 1. 

Relation 2 (Relations between the fundamental matrix and commute time). 
{j}

(1) Fii = πiCij (51) 
{j} {j}
im mi(2) 

F 
+ 

F 
= Cij + Cjm − Cim (52)

πm πi 

{j} {m}
Fim Fij

(3) + = Cjm (53)
πm πj 

{j} {i}
(4) F + F = πm (54)im jm Cij 

19 



Proof. Use (28) and (35). 

Relation 3 (The hitting time detour overhead in terms of other metrics). 

{j}
{j} {m} {m} F 

(1) H + H − H = im (55)i j i πm 
{j} {m} {m} {m,j}

(2) Hi + Hj − Hi = Qi Cmj (56) 

Proof. For the frst equation use (28) and (34), and for the second one use 
the previous equation along with (4) and (51). 

Relation 4 (The hitting time for two target nodes in terms of hitting time 
for a single target). 

{j,k} {k} {j,k} {k} {j} {k,j} {j}
Hi = Hi − Qi Hj = Hi − Qi Hk , (57) 

{j} {j,k} {k,j} {j}which can also be reformulated as: H = H + Q H .i i i k 

Proof. Aggregate two sides of Eq.(3) over m and substitute Eq.(4) in it. 

Relation 5 (Inequalities for hitting time). 

(1) {m}
Hi + H{j}

m 
{j}≥ Hi (triangular inequality) (58) 

(2) {j}
Hi 

{j,m}≥ Hi (59) 

(3) {m}
Hi + H{j,k}

m 
{j,k}≥ Hi (60) 

Proof. For the frst inequality, use (34) and (64). For the second inequality, 
use the aggregated form of Eq.(3) over m and the fact that the entries of F 
are non-negative. The third inequality is a generalization of the frst one. 

Relation 6 (Inequalities for the fundamental matrix). 

{j} {j} {j} {j}
(1) F F ≥ F F (61)im kk ik km 

{j} {j}
(2) F ≥ F (62)kk ik 

Proof. For the frst inequality, use Eq.(3) and the fact that F is non-negative. 
The second one can be derived from Eqs.(51), (55) and (58). Note that these 
two inequalities hold for any absorbing set A, hence we drop the superscripts. 
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Relation 7 (Inequality for absorption probabilities). 

{m,j} {k,j} {m,j}
Q ≥ Q Q (63)i i k 

Proof. Use (4) and (61). 

Relation 8 (Inequality for the digraph Laplacian matrix). 

L+ ≥ L+ + L+ (64)im + L+ 
kk ik km 

Proof. Use (28) and the fact that F ’s entries are always non-negative. 

Relation 9 (Relations for undirected networks (reversible Markov chain)). 

{S} {S}
F Fim mi(1) = (65)
πm πi 
{m,j}

C{j} = Q{i,j} {j}
(2) Q C (66)i m m i 

{m} {i} {m} {j}
(3) H + H{j} + H = H{i} + H + H (67)i m j m j i 

Proof. The frst equation follows from Eq.(28) and the fact that L+ is sym-
metric for undirected networks. The second equation can be derived by using 
Eqs. (4), (28), (35) and the fact that L+ is symmetric. The third equation 
follows from Eq.(34) and L+ being symmetric. 

5. Unifying Random-Walk Distance, Centrality, and Topological 
Measures 

Many network measures have been proposed in the literature for network 
analysis purposes [31], such as distance metrics for measuring the similarity 
(or diversity) between nodes or entities of a network, centrality measures to 
assess a node’s involvement or importance in the connectivity or commu-
nication between network entities, and topological indices to measure the 
structural stability of networks. In this section, we review some of these 
network measures proposed in the literature, and show that these measures 
can be unifed in terms of the fundamental tensor, which provides a coher-
ent framework for computing them and understanding the relations among 
them. 

Statement 1. Fundamental tensor F unifes various network random-walk 
measures via summation along one or more dimensions shown in Figure 1. 
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Figure 1: Markov fundamental tensor and unifying framework for computing the random 
walk distance, betweenness measure, closeness measure, and topological index 

5.1. Random-walk distance measure 
The hitting time metric has been used extensively in di˙erent applica-

tion domains, such as a distance (or dissimilarity) measure for clustering 
and classifcation purposes [9]. Note that this distance metric satisfes two 
out of three conditions for the general distance metric: It is positive when 
two ends are di˙erent and zero when two ends are identical. As noted ear-
lier, the hitting time metric is in general not symmetric, but it satisfes the 
triangle inequality. In Section 3, we have shown that hitting time can be 
computed from the fundamental tensor by summing over m’s (the middle 
node dimension, see Figure 1). X 

Distancerw(s, t) = Hs
{t} = F smt. (68) 

m 

With a cost matrix W , the hitting cost distance (10) is obtained by the 
weighted sum over the medial node dimension of the fundamental tensor: 
{t} P P 

IH = F smtbm, where bm = wmipmi is the expected outgoing cost of s m i 
node m. 
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5.2. Random-walk centrality measures 
Network centrality measures can be broadly categorized into two main 

types [31]: i) distance-based and ii) volume-based. The closeness central-
ity is an example of the distance-based measures, whereas the betweenness 
centrality is an example of volume-based measures. 

• Random-walk closeness measure: Closeness centrality ranks nodes in 
a network based on their total distance from other nodes of the net-
work. This measure refects how easily/closely the node is accessi-
ble/reachable from the other parts of the network, and in a nutshell 
how “central” the node is located within a network. The classical close-
ness centrality metric is defned using the shortest path distances. Noh 
and Rieger [12] introduces the random walk closeness centrality, which 
is defned using the hitting time distance: A node is considered to have 
a high centrality value if and only if its total hitting time distances from 
other nodes in the network is small. This closeness centrality measure 
can be easily expressed in terms of the random walk fundamental ten-
sor: X X 

H{t}Closenessrw(t) = s = F smt, (69) 
s s,m 

or in the reciprocal form to imply lower importance with small closeness 
|V| value: Closenessrw(t) = P . 

s,m F smt 

• Random-walk betweenness measure: Betweenness measure quantifes 
the number of times a node acts as a “bridge” along the paths between 
di˙erent parts of the network. The larger the number of paths crossing 
that node, the more central the node is. As a special case, the node 
degree, deg(m), can be viewed as a betweenness centrality measure in 
an undirected network. Clearly, it captures how many paths of length 1 
going through node m (or many 1-hop neighbors it has) [31]. It is also 
proportional to the total number of (random) walks passing through 
node m from any source to any target in the network. This follows 
from the following more general statement. For a general (strongly 
connected) network, we defne the random walk betweenness of node 
m as follows and show that it is proportional to πm, the stationary 
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probability of node m: X 
Betweennessrw(m) = F smt (70) 

s,tX 
= (L+ − L+ − L+ + L+)πm (71)sm tm st tt 

s,t X 
L+ = |V| πm (72)tt 

t 

= |E|Kπm, (73) 

where K is the Kirchho˙ index (see Section 5.3). The third equality 
follows by using the fact that the column sum of the digraph Laplacian 
matrix L+ = (Π(I −P ))+ is zero [27, 28]. For a (connected) undirected 
network, πm = dm , where dm is the degree of node m.

2|E| 

For undirected networks, Newman [11] proposes a variation of the ran-
dom walk betweenness measure defned above, which we denote by 
BetweennessNewman,bidirect(m) (the use of subscript bidirect will be clear 
below): it is defned as the (net) electrical current fow I through a me-
dial node in an undirected network (which can be viewed as an electrical 
resistive network with bi-directional links with resistance), when a unit 
current fow is injected at a source and removes at a target (ground), 
aggregated over all such source-target pairs. Formally, we have X 
BetweennessNewman,bidirect(m) = I(s → m → t) 

s,t XX 1 
= |F smtpmk − F sktpkm|. 

2 
s,t k 

We remark that the original defnition given by Newman is based 
on current fows in electrical networks, and is only valid for undi-P 

1rected networks. Defne f(F smt) = |F smtpmk − F sktpkm|, thenP k 2 
BetweennessNewman,directed(m) = s,t f(F smt) yields a general defni-
tion of Newman’s random walk betweenness measure that also holds for 
directed networks. In particular, we show that if a network is strictly 
unidirectional, namely, if eij ∈ E then eji ∈/ E, Newman’s random walk 
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betweenness centrality reduces to Betweennessrw(m) = |E|Kπm: XX 
BetweennessNewman,unidirect(m) = |F smtpmk|

s,t kX X 
= F smt pmk 

s,t kX 
= F smt = |E|Kπm, (74) 

s,t 

where K is the Kirchho˙ index (see Section 5.3) and the last equality 
follows from Corollary 1. 

5.3. Kirchho˙ Index 
The term topological index is a single metric that characterizes the topol-

ogy (“connectivity structure”) of a network; it has been widely used in math-
ematical chemistry to refect certain structural properties of the underly-
ing molecular graph [32][33]. Perhaps the most known topology index is 
the Kirchho˙ index [13] which has found a variety of applications [34, 35, 
36, 7, 37]. Kirchho˙ index is also closely connected to Kemeney’s constant 
[38, 39]. The Kirchho˙ index is often defned in terms of e˙ective resis-P 
tances [13], K(G) = 1 Ωst, which is closely related to commute times, as

2 s,t 

Ωst = 1 Cst [40]. Hence we have |E| 

1 X |V| X 1 X 
K(G) = Cst = L+ 

tt = F smt, (75)
2|E| |E| |E| 

s,t t s,m,t 

where the second equality comes from Eq.(35). In other words, the Kirchho˙ 
index can be computed by summing over all three dimensions in Figure 1, 
normalized by the total number of edges. 

The relations between Kirchho˙ index, e˙ective resistance, and Lapla-
cian matrix have been well studied in the literature. The authors in [7] pro-
vided three interpretations of L+ 

ii as a topological centrality measure, from 
e˙ective resistances in an electric network, random walk detour costs, and 
graph-theoretical topological connectivity via connected bi-partitions, and 
demonstrate that the Kirchho˙ index, as a topological index, captures the 
overall robustness of a network. The relation between the e˙ective resistance 
and the Moore-Penrose inverse of the Laplacian matrix is more elaborated 
in [41], and insightful relations between Kirchho˙ index and inverses of the 
Laplacian eigenvectors can be found in [42, 43]. 
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6. Characterization of Network Articulation Points and Network 
Load Distribution 

We extend the defnition of articulation point to a general (undirected and 
directed) network as a node whose removal reduces the amount of reachability 
in the network. For instance, in a network G, if t is previously reachable from 
s, i.e. there was at least one path from s to t, but t is no longer reachable 
from s after removing m, node m is an articulation point for network G. Note 
that s may still be reachable from t after removing m in a directed network, 
which is not the case for an undirected network. Hence, in an undirected 
network, the reduction in the number of reachabilities results to the increase 
in the number of connected components in the network, which is the reason 
to call articulation point as cut vertex in the undirected networks. Removal 
of an articulation point in a directed network, however, does not necessarily 
increase the number of connected components in the network. 

As an application of the fundamental tensor, we introduce the normalized 
fundamental tensor F̂ and show that its entries contain information regarding 
articulation points in a general (directed or undirected) network. If F smt 

exists, its normalized version is defned as follow, ( 
F smt if s, m 6= tˆ F mmtF smt = (76)
0 if s = t or m = t 

The normalized fundamental tensor satisfes the following properties: a) 0 ≤ 
ˆ {m,t} {m,t}
F (s, m, t) ≤ 1, and b) F̂ 

smt = Qs . Recall that Qs is the absorption 
probability that a random walk starting from node s hits (is absorbed by) 
node m sooner than node t. The second property (b) is a result of Theorem 4 

{m,t}and the frst property (a) follows from (b). Clearly, F̂ 
smt = Qs = 1 means 

that with probability 1, any random walk starts from node s always hit node 
m before node t. Hence node m is on any path (thus walk) from s to t. 
Hence it is an articulation point. We therefore have the following statement: 

Statement 2. The normalized fundamental tensor captures the articulation 
points of a network: if F̂ 

smt = 1, then node m is an articulation point; 
namely, node m is located on all paths from s to t. On the other extreme, 
F̂ 

smt = 0 indicates that m is not located on any path from s to t and thus it 
plays no role for this reachability. 
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Figure 2 depicts two simple networks, one undirected and one directed, 
and displays the corresponding normalized fundamental tensors we have com-
puted for these two networks (the tensors are “unfolded” as a series of ma-
trices, each with fxed t). Any column that contains an entry with value 
1 indicates the corresponding node m, 1 ≤ m ≤ 5, is located on all paths 
between a pair of source and target, and so is an articulation point for the 
network 3 . Counting the number of 1’s in each column m over the entire 
tensor yields the number of source-target pairs for which node m is an artic-
ulation point. The larger this count is, the more critical node m is for the 
overall network reachability. For instance, for both networks, node 3 is the 
most critical node for network reachabilities. 

More generally, we can view F̂ 
smt as a measure of how critical a role 

node m plays in the reachability from node s to node t. As a generalization 
of articulation points, we defne the overall load that node m carries for all 
source-target pairs in a network as follows: X 

ˆLoad(m) = 
1 

F smt, (77)
(n − 1)2 

s,t 

It is interesting to compare Eq.(77) with Eq.(70), where the latter (theP 
unnormalized summation s,t F smt) is proportional to the stationary prob-
ability of node m (and degree of m if the network is undirected). The distri-
bution of Load(m)’s provides a characterization of how balanced a network 
in terms of distributing its load (reachability between pairs of nodes), or how 
robust it is against targeted attacks. A network with a few high-valued ar-
ticulation points (e.g., a star network) is more vulnerable to the failure of a 
few nodes. Using a few synthetic networks with specifc topologies as well as 
real-world networks as examples, Figure 3 plots the distribution of Load(m) 
for these networks (sorted based on increasing values of Load(m)’s). Among 
the specifc-shaped networks, it is interesting to note that comparing to a 
chain network, the loads on a cycle network are evenly distributed – this 
shows the huge di˙erence that adding a single edge can make in the struc-
tural property of a network. It is not surprising that the complete graph 
has evenly distributed loads. In constrast, a star graph has the most skewed 
load distribution, with the center node as an articulation point of the net-

3As a convention, the source node is considered as the articulation point of the reach-
ability, but not the target. 
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Figure 2: Two networks, one undirected and one directed, and the corresponding normal-
ized fundamental tensor 
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(a) (b) 

Figure 3: Load balancing in a) specifc-shaped networks and b) real-world networks 

work. Comparing the binary tree, the grid network has a less skewed load 
distribution. It is also interesting to compare the load distribution of the 
binary with that of a 3-ary “fat tree” network – such a topology is used 
widely in data center networks [44]. The real networks used in Figure 3(b) 
include the Arxiv High Energy Physics - Phenomenology collaboration net-
work (CAHepPh) [45], a sampled network of Facebook [46], the coauthorship 
network of network scientists (netSci) [47], the Italian power grid [48], and 
a protein-protein interaction network [49]. For comparison, we also include 
three networks generated via two well-known random network models, the 
Preferential Attachment generative model (PA) [50] and Erdos Renyi (ER) 
random graph model [51] with two di˙erent initial links of 8 (random) and 40 
(random2). We see that the two ER random networks yield most balanced 
load distributions, whereas the PA network exhibits behavior similar to a 
tree network, with a few nodes bearing much higher loads than others. The 
real networks exhibit load distributions varying between these types of ran-
dom networks (with the Italian power grid closer to an ER random network, 
whereas netSci closer to a PA random network). 

7. Most Infuential Nodes in Social Networks 

Online social networks have played a key role as a medium for the spread 
of information, ideas, or “infuence” among their members. The Infuence 
maximization problem in social networks is about fnding the most infuential 
persons who can maximize the spread of infuence in the network. This 
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problem has applications in viral marketing, where a company may wish 
to spread the publicity, and eventually the adoption, of a new product via 
the most infuential persons in popular social networks. A social network 
is modeled as a (directed or undirected) graph where nodes represent the 
users, and edges represent relationships and interactions between the users. 
An infuence cascade over a network can be modeled by a di˙usion process, 
and the objective of the infuence maximization problem is to fnd the k most 
infuential persons as the initial adopters who will lead to most number of 
adoptions. 

The heat conduction model [52] is a di˙usion process which is inspired by 
how heat transfers through a medium from the part with higher temperature 
to the part with lower temperature. In this di˙usion process, the probability 
that a user adopts the new product is a linear function of adoption probabil-
ities of her friends who have infuence on her as well as her own independent 
tendency. We modeled the independent tendency of users for the product 
adoption by adding an exogenous node, indexed as o, and linked to all of 
the nodes in the network. Network G with added node o is called extended 
G, denoted by Go . We showed that the infuence maximization problem for 
k = 1, where k = #initial adopters, under the heat conduction di˙usion 
process has the following solution in terms of the normalized fundamental 
tensor over Go [52]: X 

t ∗ = arg max F̂ 
sto. (78) 

t 
s∈V 

We also proved that the general infuence maximization problem for k > 1 
is NP-hard [52]. However, we proposed an eÿcient greedy algorithm, called 
C2Greedy [52], which fnds a set of initial adopters who produce a provably 
near-optimal infuence spread in the network. The algorithm iteratively fnds 
the most infuential node using Eq.(78), then removes it from the network 
and solves the equation to fnd the next best initiator. P 
Statement 3. For k = 1, arg maxt s∈V F̂

 
sto fnds the most infuential node 

of network Go as the initial adopter for maximizing the infuence spread over 
the network with heat conduction [52] as the di˙usion process. For k > 1, 
the greedy algorithm, C2Greedy [52], employs this relation to iteratively fnd 
the k most infuential nodes, which yields a provably near-optimal solution. 

In [52], we showed that C2Greedy outperforms the state-of-the-art infu-
ence maximization algorithms in both performance and speed, which we do 
not repeat here. Instead, we present two new sets of experiments in the rest. 
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(a) (b) 

Figure 4: Infuence spread by a) two most infuential nodes found from C2Greedy [52], b) 
two neighbors of nodes in part a 

We remark that the metric in Eq.(78) addresses both the global character-
istics of the network by placing the most infuential node in the critical and 
strategical “center” of the network, and the local characteristics by specifying 
the highly populated and “neighbor-rich” nodes. In Figure 4(a), we visualize 
the infuence spread of the two most infuential nodes found from C2Greedy 
using the ESNet [53] network. The initiators are colored in black, and the 
green shades indicate the infuence spread over the nodes in the network; 
the darker the green, the higher probability of production adoption for the 
node. In Figure 4(b), we pick two nodes, which are a neighbor of the two 
most infuential nodes identifed by C2Greedy, as the initiators, and visual-
ize the probability of infuence spread caused by these two nodes over other 
nodes in the network. The lower green intensity of Figure 4(b), compared to 
that of Figure 4(a) shows that not any two initiators – even if they are their 
immediate neighbors and globally located very closely – can cause the same 
infuence spread as the two most infuential nodes identifed by C2Greedy. 

Moreover, we show that the k most infuential initiators found by C2Greedy 
have higher infuence spread in the network compared to that of well-known 
centrality/importance measure algorithms: 1- top k nodes with highest (in-
)degree, 2- top k nodes with highest closeness centrality scores, 3- top k 
nodes with highest Pagerank score [54], and 4- a benchmark which consists 
of k nodes picked randomly. For this purpose, we use real-world network data 
from three social networks, wiki vote [55], hepPh citation [56], and Facebook 
[46]. Figure 5 illustrates how the C2Greedy outperforms the other algorithms 
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(a) wiki vote (b) hepPh citation (c) facebook 

Figure 5: Infuence spread comparison between 5 di˙erent “most infuential nodes" meth-
ods for a wide choice of initiator sizes. 

for a wide range of k. 

8. Fast Computation of Dynamic Network Reachability Queries 

Reachability information between nodes in a network is crucial for a wide 
range of applications from gene interactions in bioinformatics [57] to XML 
query processing [58]. Given a network, a reachability query R(s, t) has a 
binary answer with 1 indicating that target node t is reachable from source 
node s, and 0 representing that it is not. Several eÿcient algorithms have 
been devised to answer reachability queries when the network is static [59, 
60, 61, 62]. However, few eÿcient solutions have been developed to answer 
reachability query for dynamic networks, e.g., after node or link failures. For 
example, garbage collection in programming languages requires dynamic (re-
)computation of reachability to balance the reclamation of memory, which 
might be reallocated. The speed of answering reachability queries a˙ect the 
performance of applications [63]. 

As a fnal application of the fundamental tensor, we illustrate how it 
can be employed to develop an eÿcient algorithm to answer reachability 
queries for dynamic networks. Here we do not require the network G under 
consideration (before or after failures) be strongly connected, otherwise the 
reachability query problem is trivial. For simplicity of exposition, in the 
following we only consider node failures. Similar in Section 7, we add an 
exogenous node o to network G and connecting all the nodes to it. We 
note that this extended network Go has only one recurrent equivalence class, 
and F sto exists for any pairs of s and t. Moreover, F sto is non-zero if and 
only t is reachable from s in G. This is because with non-zero probability 
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a random walk will visit every node that is reachable from s before hitting 
o. By pre-computing the fundamental matrix F {o} once, we can answer any 
reachability query R(s, t) in constant time using F {o} by performing a table 
look-up. 

Now suppose a set of nodes, F , fail. We claim that we can answer the 
dynamic reachability query R(s, t, F) (after the nodes in F fail, but without 
prior knowledge of the node failure set F) in O(|F|). In particular, if |F| 
is of a constant order O(1) compared to the size of network |V|, then the 
queries are answered in constant O(1) time. This is achieved by leveraging 
Theorem 3 for incremental computation of the fundamental matrix. Let 
S = F ∪ {o} and defne F stS 

F −1F stS = F sto − F sFo FFo F Fto, (79) 

{o} {o} {o} {o}which is the tensor form of F S = F − F (F )−1F . Note that thest st sF FF Ft 
{o}sub-matrix (FFF )

−1 is non-singular. This comes from the fact that F {o} is 
an inverse M-matrix (an inverse M-matrix is a matrix whose inverse is an M-
matrix), hence each of its principal sub-matrix is also an inverse M-matrix. 
We have the following statement: 

Statement 4. In the extended network Go , F sto is non-zero if and only if t 
is reachable from s in the original network G. Furthermore, if the nodes in 
the set F fail, F stS is non-zero (where S = F ∪ {o}) if and only if t is still 
reachable from s in network G after the failures. 

Using the above statement and Theorem 3, we can answer (static and 
dynamic) reachability queries both before and after failures in constant times 
(for a constant size node failure set F) by pre-computing F ::o (=F {o}) and 
storing the results in a table. The method for answering reachability queries 
is summarized in Algorithm (1). The function 1{b} is an indicator function 
which is equal to 1 if b = T rue and 0 if b = F alse. 

9. Conclusion 

We revisited the fundamental matrix in Markov chain theory and ex-
tended it to the fundamental tensor which we showed that can be built much 
more eÿciently than computing the fundamental matrices separately (O(n3) 
vs. O(n4)) for the applications that the whole tensor is required. We also 
showed that fundamental matrix/tensor provides a unifying framework to 
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Algorithm 1 Answering a reachability query 

1: query: R(s, t, ∼ F) 
2: input: transition matrix P of the extended network Go 

3: precomputed oracle: F ::o = (I − P\o)
−1 

4: output: answer to reachability queries. 
5: if F = ∅ then 
6: R(s, t) = 1{F sto>0}
7: else 
8: R(s, t, ∼ F) = 1{F sto−F sFoF −1 F Fto>0}FFo 

9: end if 

derive other Markov metrics and fnd useful relations in a coherent way. We 
then tackled four interesting network analysis applications in which funda-
mental tensor is exploited to provide e˙ective and eÿcient solutions: 1) we 
showed that fundamental tensor unifes various network random-walk mea-
sures, such as distance, centrality measure, and topological index, via summa-
tion along one or more dimensions of the tensor; 2) we extended the defnition 
of articulation points to the directed networks and used the (normalized) fun-
damental tensor to compute all the articulation points of a network at once. 
We also devised a metric to measure the load balancing over nodes of a net-
work. Through extensive experiments, we evaluated the load balancing in 
several specifcally-shaped networks and real-world networks; 3) we showed 
that (normalized) fundamental tensor can be exploited to infer the cascade 
and spread of a phenomena or an infuence in social networks. We also 
derived a formulation to fnd the most infuential nodes for maximizing the 
infuence spread over the network using the (normalized) fundamental tensor, 
and demonstrated the eÿcacy of our method compared to other well-known 
ranking methods through multiple real-world network experiments; and 4) 
we presented a dynamic reachability method in the form of a pre-computed 
oracle which is cable of answering to reachability queries eÿciently both in 
the case of having failures or no failure in a general directed network. 
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10. Appendix 

In this appendix, we provide the detailed derivations regarding the rela-
tions between the stochastic form and matrix form of hitting time and hitting 
costs, respectively. 
• Relation between the stochastic form and matrix form of 

hitting time 
Let t be the only absorbing node and rest of nodes belong to T , then: X X X X X 

H{t} = k [P k−1] = k [P k−1] (1 − )s T T sm[PT A]mt T T sm [PT T ]mj 
k=1 m∈T k=1 m∈T j∈TX X X X X 

= k( [P k−1] − [P k ) = k([P k−1] − [P k )T T sm T T ]sj T T sm T T ]sm 
k=1 m∈T j∈T m∈T k=1X X 

F {t}= [P k−1] = , (80)T T sm sm 
m∈T m 

which is the matrix form of hitting time Eq.(5). 
• Relation between the stochastic form and matrix form of 

hitting cost 
Let Zsm be the set of all possible walks from s to m and ζj be the j-th walk 

from this set. We use Zsm(l) to denote the subset of walks whose total length 
is l, and Zsm(k, l) to specify the walks which have total length of l and total 
step size of k. Recall that a walk (in contrast to a path) can have repetitive 
nodes, and the length of a walk is the sum of the edge weights in the walk and 
its step size is the number of edges. Recall that P(ηt = l|X0 = s) denotes the 
probability of hitting t in total length of l when starting from s, which can be P 
obtained from the probability of walks: P(ηt = l|X0 = s) = Prζj .ζj ∈Zst(l) 
Probability of walk ζj denoted by Prζj is computed by the production over 
the probabilities of passing edges: Prζj = psv1 pv1v2 ...pvk−1m, where pvu is the 
edge probability from v to u. The summation over the walk probabilities is 
computed using the following relation: (X [P k if m ∈ T T T ]smPrζj = (81)

[P k−1PT A]sm if m ∈ A 
ζj ∈Zsm(k) T T 

With this introduction, the derivation of the stochastic form of hitting cost 
Eq.(9) can proceed as follows: 
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<∞X X X 
IHs
{t} = l Prζj (82) 

l∈C k=1 ζj ∈Zst(k,l) 

<∞XX X 
= lζj Prζj 

l∈C k=1 ζj ∈Zst(k,l)X 
= lζj Prζj (83) 

ζj ∈Zst 

kζjX X 
= Prζj wvk−1vk (84) 

ζj ∈Zst k=1 

kζj kζjkX X Y Y 
= [ ). ] (85)pvi−1vi .(pvkvk+1 wvk vk+1 pvi−1vi 

ζj ∈Zst k=1 i=1 i=k+2X X X 
= pxywxy( Prζj ).( Prζi ) (86) 

exy ∈E ζj ∈Zsx ζi∈Zyt X X X X X 
= pxywxy( Prζj ).( Prζi ) (87) 

exy ∈E k ζj ∈Zsx(k) k ζi∈Zyt(k)X X X 
= ( [P k ).( [P k−1 (88)pxywxy T T ]sx T T PT A]yt) 

exy ∈E k kX 
F {t}Q{t}= pxywxy sx y (89) 

exy ∈EX 
F {t}= pxywxy (90)sx 

exy ∈EX X 
F {t}= sx pxywxy (91) 

x y∈Nout(x)X 
F {t}= sx rx, (92) 

x 

where lζj and kζj denote the length and step size of a walk ζj , respectively, P 
and rx = pxywxy is the average outgoing cost of node x. In the y∈Nout(x) 
above derivation, Eq.(88) comes from Eq.(81), and Eq.(90) follows from the 

{t}fact that Qy = 1 when having t as the only absorbing node in the network 
and reachable from all the other nodes. 
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