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Abstract 

Many real-world systems around us can be described as complex networks (e.g., 

electric grids, cyber-physical systems, chemical and energy systems). Hence, there has 

been a quickly growing interest in such networks, since they can help us to represent, 

analyze and evaluate many of the complex and dynamic systems that have become 

a critical resource in our daily and social life (i.e., the Internet and the World Wide 

Web, online social networks, road networks, etc). Complex networks have been studied 

in different contexts (i.e., communities extraction, path lengths, cluster coefficient and 

degree distributions, small-world networks, etc.) for a long time. However, our under-

standing of the possible organizing principles shaping the observed topology of complex 

networks is still in its infancy. In this dissertation, we advance the current knowledge 

in understanding the topology and formation of complex systems. More specifically, 

we explore the concept of “reciprocal network” and present new methods to “uncover” 

and “dissect” the core structure of complex networks with the goal of improving our 

understanding of such systems. 

First, we present a comprehensive measurement-based characterization of the re-

ciprocal network extracted from a directed complex network – using the online social 

network Google+ as a case study – and its evolution over time, with the goal to gain 

insights into the structural properties of a complex network. In a sense, the reciprocal 

network can be viewed as the stable skeleton network of a directed network that holds it 

together. Thus, it could reveal the possible organizing principles shaping the observed 

network topology of a directed complex network. 

Second, we have advanced and developed an effective procedure to extract the core 

structure of complex networks. To achieve this, we propose two new metrics a node 

“dependence value” and a subgraph “nucleon-index”. Then, using these metrics, we 

proposed a modified version of the traditional k-shell decomposition method by identi-

fying the kC -index where we should stop pruning the network in order to preserve its 

core structure and extract a meaningful “core” for complex networks. 

Third, with the goal of dissecting the structure of the nucleus of a massive complex 

network, we propose a two-step procedure to hierarchically unfold the nucleus of complex 
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networks by building up and generalizing ideas from the existing clique percolation 

approaches. Our scheme builds (hyper)graphs that provide us with a “big picture” 

view of the core structure of a complex network and how it is formed. Our methodology 

is very scalable and can be applied to massive complex networks (hundreds million nodes 

and billion edges). 

In summary, this thesis proposes new tools to understand the structural properties 

and formation of complex networks. Our developed schemes are capable of: i) helping 

to understand possible organizing principles shaping the observed network topology of 

a directed complex network; ii) extracting the core structure of complex networks; and 

iii) dissecting the structure of the dense nucleus of massive complex networks. 
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Chapter 1 

Introduction 

Many real-world systems in biology, neuroscience, physics, engineering and social sci-

ence can be described as complex networks (e.g., electric grids, cyber-physical systems, 

and chemical and energy systems). There has been a quickly growing interest in such 

networks, since they can help us to represent, understand and evaluate many of the 

complex and dynamic systems around us. Today’s internet and social networks are ex-

ample of complex networks that have become a critical resource in our daily and social 

life: interacting with people, processing information, and diffusing social influence. 

Complex networks have been studied in different contexts for a long time [2, 3, 

4, 5, 6, 7, 8, 9]. Many of these studies focus on detecting the underlay structures of 

complex systems by finding subnetworks (e.g., communities, core-periphery) in order 

to understand the topology of complex networks; while others focus on highlighting 

statistical properties (e.g., path length, diameter, density and degree distributions) that 

characterize the structure and behavior of networked systems, and on creating models of 

networks that can help us to understand the properties of complex networks. However, 

our understanding of the possible organizing principles shaping the observed network 

topology of complex networks is still in its infancy. In the words of E. O. Wilson 18 , 

“The greatest challenge today, not just in cell biology and ecology but in all of science, 

is the accurate and complete description of complex systems” [10]. 

This thesis spans the areas of methodologies and algorithms to understand the topo-

logical organizing principles and formation of complex network systems. Why is network 
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structure/topology so important to characterize? Because structure always affects func-

tion. For instance, the topology of social networks affects the spread of information and 

disease, and the topology of the power grid affects the robustness and stability of power 

transmission [15]. To this end, this thesis addresses the following closely related prob-

lems. First, we investigate the topological structure of complex network by focusing 

on concept of “reciprocal network”. Second, we propose a novel procedure to uncover 

the “nucleus” of complex network in order to understand their formation. Third, we 

design a algorithm to dissect the dense structure of the nucleus of massive complex 

networks to help us further understanding the nucleus of complex networks and develop 

tool/algorithms to take advantage of this structure. 

1.1 Thesis Statement 

The central thesis of this dissertation is as follows: 

Complex networks have become a critical resource in our daily life for a long time. 

However, our deep understanding of the organizing principles shaping the observed topol-

ogy of complex networks is still in its infancy. 

This thesis explores new concepts and develops algorithms that could reveal possible 

mechanism of social, biological or different nature that systematically acts as organizing 

principles shaping the observed network topology of complex networks. We specically 

focus on three key points: reciprocal network, network core extraction and network core 

dissection. 

1.2 Outline and Contributions 

This dissertation studies the reciprocal network, core extraction and dissection of com-

plex networks separately. The outline of this dissertation, along with the primary con-

tributions of this dissertation are as follows: 

Reciprocal Networks and their Evolution (Chapter 3). Many complex networks 

such as Twitter,Google+, Flickr and Youtube are directed in nature, and have been 

shown to exhibit a nontrivial amount of reciprocity. Reciprocity is defined as the ratio 

of the number of reciprocal edges to the total number of edges in the network, and has 
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been well studied in the literature. However, little attention is given to understand the 

connectivity or network form by the reciprocal edges themselves (reciprocal network), its 

structural properties, and how it evolves over time. In this chapter, we bridge this gap 

by presenting a comprehensive measurement-based characterization of the connectivity 

among reciprocal edges in a directed complex network – using the online social network 

(OSN) Google+ as case study – and their evolution over time, with the goal to gain 

insights into the structural properties of a complex network. In a sense, the reciprocal 

network can be viewed as the stable skeleton network of a directed network that holds 

it together. Thus, they could reveal the possible organizing principles shaping the 

observed network topology of a directed complex network. Moreover, understanding 

the dynamic structural properties of the reciprocal network provides us with additional 

information to characterize or compare directed networks that go beyond the classic 

reciprocity metric, a single static value currently used in many studies. 

Uncovering the Nucleus of Complex Networks (Chapter 4). Many complex 

network studies have focused on identifying communities through clustering or par-

titioning a large complex network into smaller parts. While community structure is 

important in complex network analysis, relatively little attention has been paid to the 

problem of core structure analysis in many complex networks. Intuitively, one may ex-

pect that many complex networks possess some sort of a core which holds various parts 

of the network (or constituent communities ) together. We believe that it is just as 

important to uncover and extract the core structure referred to as the nucleus in this 

paper of a complex network as to identify its community structure. In this chapter, 

we have advanced and developed an effective procedure to extract the core structure of 

complex networks. To achieve this, we introduce a new metric the node “dependence 

value” that measures the location importance of a node in a network. Then, we define 

a new measure called “nucleon-index” that captures the extend to which a subgraph is 

a densely intra-connected and topological central core. Then, using these metrics, we 

proposed a modified version of the traditional k-shell decomposition method by identi-

fying the kC -index where we should stop pruning the network in order to preserve its 

core structure and extract a meaningful “core” for complex networks. 

Dissecting the Nucleus of Massive Complex Networks using (Hyper)Graphs 

(Chapter 5). In this chapter, with the goal of dissecting the structure of the nucleus 
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of a massive complex network (using Google+ reciprocal network as a case study), we 

propose a two-step procedure to hierarchically unfold the nucleus of complex networks 

by building up and generalizing ideas from the existing clique percolation approaches. 

Using maximal cliques as the basic atomic structures of the network nucleus, we build 

(hyper)graphs that provide us with a higher-level representation of the dense core graph 

of complex networks. Hence, our scheme provides a “big picture view of the core struc-

ture of a complex network and how it is formed. Our methodology is very scalable and 

can be applied to massive complex networks (hundreds million nodes and billion edges). 

This thesis proposes new tool to understand the structural properties and formation 

of complex networks. Our developed schemes are capable of: i) helping to understand 

possible organizing principles shaping the observed network topology of a directed com-

plex network; ii) extracting the core structure of complex networks; and iii) dissecting 

the structure of the dense nucleus of massive complex networks. 

The remainder of this dissertation introduces background and motivation (Chapter 

2); presents our comprehensive measurement-based characterization of the connectivity 

among reciprocal edges in a directed complex network (Chapter 3); presents our effective 

procedure to extract the core structure of complex networks (Chapter 4); presents our 

two-step procedure to hierarchically unfold the nucleus of massive complex networks 

(Chapter 5); discusses future directions and finally concludes (Chapter 6). 

1.3 Bibliographic Notes 

Part of the contents of Chapter 3 on studying reciprocal networks and their evolution 

is from a conference paper, titled “Analysis of a Reciprocal Network Using Google+: 

Structural Properties and Evolution”, which appeared in the Proceedings of the 5th In-

ternational Conference on Computational Social Networks (CSoNet’16), Ho Chi Minh 

City, Vietnam, August 2-4, 2016 [11]. Our developed effective procedure to extract the 

core structure of complex networks is presented in a conference paper titled “Uncov-

ering the Nucleus of Social Networks”, which appeared in the Proceedings of the 10th 

ACM Conference on Web Science (WebSci’18), May 27-30, 2018, Amsterdam, Nether-

lands [12]. This constitutes part of Chapter 4. Part of the contents of Chapter 5 are 

from two papers titled “Uncovering the Nucleus of a Massive Reciprocal Network”, 
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which appeared on the World Wide Web Journal - Special issue on “Social Comput-

ing and Big Data Applications, (2018) [13] and another paper titled “Unfolding the 

Core Structure of the Reciprocal Graph of a Massive Online Social Network.”, which 

appeared on the Proceedings of the 10th Annual International Conference on Combi-

natorial Optimization and Applications (COCOA’16), Hong Kong, China, December 

16-18, 2016” [14]. 



Chapter 2 

Background and Motivation 

Complex networks (i.e. networks with non-trivial topological features [1]) are a funda-

mental tool to represent and model the structure of many real-world complex systems. 

These include the Internet [33, 32], World Wide Web [42], mobile phone [59], collabora-

tion [28] and citation [21] networks, but also systems of interest in biology, physics, neu-

roscience and statistics. Today, many complex systems have become a critical resource 

in our daily and social life. For example, the Internet is arguably the largest complex 

network ever created by mankind. The Internet is a computer network which consist 

of millions of switches/routers and communication links. It interconnects hundreds of 

millions of hosts or end systems throughout the world: PCs, PDAs, laptops, sensors, 

webcams, game consoles, picture frames, cellphones, automobiles, home electrical and 

security devices, etc. Similar to today’s Internet, social networks (e.g., Facebook, Twit-

ter, Google+) are another example of complex networks that have become a critical 

resource in our daily or social life – users represent vertices or nodes and edges capture 

specic relations (e.g., friendship and co-authorship). In fact, social networking became 

the most popular online activity worldwide [50]. 

There has been a quickly growing interest in the study of complex networks, since 

they can provides us with new insight into a vast array of complex and previously 

poorly understood phenomena in many of the complex and dynamic systems around 

us. Thus, toward understanding complex network researchers have identified a series of 

unifying principles and statistical properties common to most of the real network. For 
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Figure 2.1: Examples of parasocial (one-way edge) and reciprocal (bi-directional edges) 
edges 

example, node degree, network diameter, path length, cluster coefficient, density, reci-

procity, community and core-periphery structures, etc. Furthermore, a lot of work has 

been devoted on building mathematical modeling of networks, including random graph 

models and their generalizations, exponential random graphs, p-models and Markov 

graphs, the small-world model and its variations, and models of growing graphs includ-

ing preferential attachment models and their many variations [15]. However, the study 

of networks is by no means a complete science yet, our understanding of the possible 

organizing principles shaping the observed network topology of complex networks is still 

in its infancy. 

In this dissertation, we advanced the currently knowledge in understanding the topol-

ogy and formation of complex network systems. More specifically, we explore the con-

cept of reciprocal network and advance the knowledge on the methods to “uncover” and 

“dissecting” the core structure of complex networks with the goal of revealing the pos-

sible organizing principles shaping the observed network topology of complex networks. 

In the rest of this chapter, we summarize the background necessary for the following 

chapters and provide some motivation examples. 

2.1 Reciprocity in Complex Networks 

Many online social networks are fundamentally directed: they consist of both reciprocal 

edges, i.e., edges that have already been linked back, and parasocial edges, i.e., edges 

have not been or is not linked back [16] – see Fig. 2.1. Reciprocity is defined as the 

ratio of the number of reciprocal edges to the total number of edges in the network, 

and it is believed that it plays an important role in the structural properties, formation 

and evolution of online social networks. Hence, this metric has been widely studied 
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(a) Community (b) Core-periphery 

Figure 2.2: Example networks with community structure and a core-periphery structure. 

in the literature in various contexts, see, e.g., [16, 17, 18, 19, 20, 21]. For example, 

it has been used to compare and classify different directed networks, e.g., reciprocal 

or anti-reciprocal networks[17]. The authors in [16] investigate the factors that influ-

ence parasocial edges to become reciprocal ones. The problem of maximum achievable 

reciprocity in directed networks is formulated and studied in [18], with the goal to under-

stand how bi-degree sequences (or resources or “social bandwidth”) of users determines 

the reciprocity observed in real directed networks. The authors in [19] propose schemes 

to extract meaningful sub-communities from dense networks by considering the roles 

of users and their respective connections (reciprocal versus non-reciprocal ties). The 

authors in [20] examine the evolution of reciprocity and speculate that its evolution is 

affected by the hybrid nature of Google+, whereas the authors in [21] conduct a similar 

study and conclude that Google+ users reciprocated only a small fraction of their edges: 

this was often done by very low degree users with no or little activity. However, many 

studies have used reciprocity (a single-valued aggregate metric) to characterize massive 

directed OSNs, which we believe is inadequate (more in Chapter 3). 

2.2 The Nucleus of Complex Networks 

Many complex networks have both a community structure and a core-periphery struc-

ture [22, 23, 24]. Community is often considered to be a subset of vertices that are 
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(a) double star graph (b) binary tree 

Figure 2.3: Example networks of double star and binary tree graphs. These structures 
cannot be decomposed using k-core decomposition. 

Figure 2.4: Visualization of the Internet at the AS level [1] using k-shell (constructed 
using the k-shell decomposition method). 



10 

densely connected internally but sparsely connected to the rest of the network [25, 26, 

27, 28, 29] and it has received a lot of attention in the literature. This structure some-

times used to decompose large network into smaller components in order to control or 

manage dynamic system. However, not all “communities” are created equal in a net-

work – some of them may overlap to form the core structure of a complex system: “a 

super community” (network core or nucleus). The core nodes in complex networks are 

fundamental for the structural properties of the network. Consequently, finding these 

nodes (or core-periphery structure) within a complex network is a powerful tool for un-

derstanding the functioning of a complex system, as well as for identifying a hierarchy of 

connections and understanding the organizing principles shaping the observed network 

topology (top-down or bottom-up1 process). Figure 2.2 illustrates example networks 

with community and core-periphery structures. 

One of the most popular quantitative methods to investigate core-periphery struc-

ture was proposed by Borgatti and Everett in 1999 [30]. Based on this study, several 

methods for identifying the core-periphery of a network have been proposed [31, 32, ?]. 

These algorithms attempt to determine which nodes are part of a densely-connected 

core and which are part of a sparsely connected periphery by solving some complex 

optimization problem. In contrast, some studies simply define the network “core” as 

the maximal clique composed of the highest degree nodes in a network [33], while other 

studies focus instead on some notion of connectivity information (e.g. betweenness, 

closeness, etc.) to find the core and periphery of a network [31, 22, 32, 34, 35]. Con-

sequently, most of these methods are computationally expensive and do not scalable to 

large networks. 

The authors in [36] used the notion of α-β community to extract the “core” of a 

graph. An α-β community is a connected subgraph C with each vertex in C connected 

to at least β vertices of C and each vertex outside of C connected to at most α vertices 

of C (α < β). They extract the network core structure by taking the intersection 

of α-β communities of different size k. A core thus corresponds to one or multiple 

dense regions of the graph. As a result, the proposed heuristics in [36] may return 

multiple dense regions (“cores”) for a given network. In addition, this algorithm does 

1top-down: existing networks expand by adding “new branches”; bottom-up: existing networks are 
interconnected (by adding new links or building a new interconnection network). 
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not guarantee to terminate within a reasonable amount of running time. 

The authors in [?] propose the k-core decomposition to discover interesting structural 

properties of networks. A k-core of G is a subgraph G∗ obtained by recursively removing 

all the vertices of degree less than k, until all the vertices in the remaining graph have 

degree at least k. This method is very scalable and it has a time complexity similar 

to the k-shell decomposition for general graphs: (O(V + E)). However this method is 

unable to uncover the structural properties for certain type of graphs or substructures. 

For example, a double star-like graph S formed by two connected vertices v and u with 

high degrees that connect many vertices with degree one cannot be decomposed beyond 

1-shell (or 1-core), containing all the vertices in graph S, no matter how high are the 

degree of the vertices v and u. Similarly, a binary tree graph T cannot be decomposed 

beyond the first shell, independently of the depth of the tree T – see Fig. 2.3 for an 

illustration. 

In [1] the authors proposed the “k-shell decomposition method”, one of the most 

popular and scalable method to investigate and visualize the core-periphery structure 

in complex networks. Different from k-core decomposition, in this method at each step 

k, we prune vertices of degree k or less. This method has been successfully used as a 

visualization tool for studying and uncovering the core structure of networks such as 

the Internet AS graph [1](see Fig. 2.4). However, this method is unable to uncover the 

core structure of some complex networks (more on Chapter 4). 

2.3 Implications of Finding the Nucleus of a Network 

In this section, we discuss the implications of uncovering the nucleus of complex net-

works. While the implications are likely applicable to many different applications, we 

concentrate on their effect on network formation, design, robustness and control: 

Network Formation: A network core gives a well-defined starting point and a way 

to explore the network topology systematically. For example, a network can be recon-

structed layer by layer from the core to its periphery. Then, topological features of the 

nodes and structural properties of the network can be measured at each layer. Further-

more, using the core, we can build macroscopic models of the network that can help us 

predict the topological growth of the network and provide good upper bounds of the 



12 

distance between the nodes – see the jellyfish model of the Internet in [33]. Therefore, 

unveiling the core structure of networks can help us uncover and understand possible 

organizing principles shaping the observed network topological structure and network 

formation. 

Network Design: Observing the evolution patterns of the core structure of social 

networks can give insights for the design of future social networks by other social net-

working service providers who would like to enter the market. Furthermore, it can also 

help applications for social networks to be designed to take advantage of the network 

core properties. 

Network Robustness: Robustness is often defined as the ability of a network to 

continue to function when it is subject to failures. Uncovering the core structure of 

networks is fundamental in the development of techniques for analyzing the vulnerability 

or robustness of networks. For example, in Google+ the tight core coupled with high 

link reciprocity implies that users in the core appear on large number of the shortest 

paths in the network. Thus, if malicious users are able to penetrate the core, they can 

destroy or remove the hubs of information flow (core nodes) in the network. Hence, 

disrupting the functionally of the network. Then, by strengthening the defenses in the 

core subgraph, we can increase the robustness of the social networks. 

Control Dynamics Systems: Dynamic network decomposition has been studied in 

different contexts for a long time [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. 

The key of many decomposition methods is to detect the underlaying structures of the 

network by finding subnetworks with significantly more links between the nodes inside 

than across them. To find such subnetworks, the well-known concept of “community” 

structure has been used to systematically decompose the network into subnetworks. 

Then, these subnetworks are used to implement distributed control schemes by assigning 

controllers to these structures, with the corresponding controllers coordinated through 

some level of information sharing. Thus, the stability and manageability of the entire 

system can be guaranteed by stabilizing these subnetworks. This technique (referred to 

as “distributed control”) has been widely used to control large networked systems (e.g., 

electric grids [50], cyber-physical systems [51], and chemical and energy systems [52]). 

Dynamics networks have a core-periphery structure. Thus, the identification of such 

structure is crucial for improving the control of these complex systems. 



Chapter 3 

Reciprocal Networks and their 

Evolution 

3.1 Introduction 

It has been shown that major online social networks (OSN) that are directed in nature, 

such as Twitter, Google+, Flickr and Youtube, all exhibit a nontrivial amount of reci-

procity: for example, the global reciprocity of Flickr [53], Youtube [53], Twitter [54] 

and Google+[55] have been empirically measured to be 0.62, 0.79, 0.22 and 0.32, re-

spectively. Reciprocity has been widely studied in the literature in various contexts, 

see, e.g., [16, 17, 18, 19, 20, 21]. Reciprocal edges represent the most stable type of 

connections or relations in directed network – they reflect strong ties between nodes or 

users [56, 57, 58], such as (mutual) friendships in an online social network or “follow-

ing” each other in a social media network like Twitter. Connectivity among reciprocal 

edges can thus potentially reveal more information about users in such networks. For 

example, a clique formed by reciprocal edges suggest users involved are mutual friends 

or share common interests. More generally, it is believed that nontrivial patterns in the 

reciprocal network – the bidirectional subgraph (see Figure 3.1) of a directed graph could 

reveal possible mechanism of social, biological or different nature that systematically 

acts as organizing principles shaping the observed network topology [17]. Moreover, 

understanding the dynamic structural properties of the reciprocal network can provide 
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us with additional information to characterize or compare directed networks that go be-

yond the classic reciprocity metric, a single static value currently used in many studies. 

However, little attention has been paid in the literature to understand the connectivity 

between reciprocal edges – the reciprocal network – and how it evolves over time. 

In this paper we perform a comprehensive measurement-based characterization of 

the connectivity and evolution of reciprocal edges in Google+ (thereafter referred to as 

G+ in short), in order to shed some light on the structural properties of G+’s reciprocal 

network. We are particularly interested in understanding how the reciprocal network of 

G+ evolves over time as new users (nodes) join the social network, and how reciprocal 

edges are created, e.g., whether they are formed mostly among extant nodes already in 

the system or by new nodes joining the network. For this, we employ a unique massive 

dataset collected in a previous study [21]. We start by providing a brief overview of G+ 

and a description of our dataset in Section 3.2. We then present our methodology to 

extract the reciprocal network of G+ using Breadth-First-Search (BFS), together with 

some notations in Section 3.3. In Section 3.4.1, we discuss a few key aggregate properties 

of the reciprocal network including the growth of the numbers of nodes and edges over 

time, the in-degree, out-degree, and reciprocal or mutual degree distributions. We then 

analyze the evolution of the reciprocal network in terms of its density, and categorize 

the nodes joining the reciprocal network based on the (observed) time they joined the 

network in Sections 3.4.2, and study the types of connections they make (reciprocal 

edges) in Section 3.4.3. Finally we discuss the implications of our findings and we 

conclude the paper in Section 3.5. We summarize the major findings of our study as 

follows: 

• We find that the density of G+ – which reflects the overall degree of social con-

nections among G+ users – decreases as the network evolves from its second to 

third year of existence. This finding differs from the observations reported in [20], 

where it found that G+ social density fluctuates in an increase-decrease fashion 

in three phases, but it reaches a steady increase in the last phase during its first 

year of existence. 

• Furthermore, we observe that both the density and reciprocity metrics of G+’s 

reciprocal network also decrease over time. Our analysis reveals that these are 
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Figure 3.1: Illustration of the reciprocal network (H i+1) of a directed graph (Ωi+1). 
Specifically, (B, C), (C, B), (B, D), (D, B), (D, E), (E, D), (C, E), (E, C) are reciprocal 
edges; (A, B), (C, A), (D, F ), (F, E) are parasocial edges. The reciprocity of Ωi+1 is 
8/12 = 0.67 

due to the fact that the new users joining G+ later tend to be less “social” as 

they make fewer connections in general. In particular, i) the number of users 

creating at least one reciprocal edge is decreasing as the network evolves; ii) the 

new users joining the reciprocal network are creating fewer edges than the users 

in the previous generation. 

• We show that if a user does not create a reciprocal edge when he/she joins G+, 

there is a lower chance that he/she will create one later. In addition, users who 

already have reciprocal connections with some users tend to create more reciprocal 

connections with additional users. 

To the best of our knowledge, our study is the first study on the properties and evolution 

of a “reciprocal network” extracted from a directed social graph. 

3.2 Google+ Overview and Dataset 

In this section, we briefly describe key features of the Google+ service and a summary 

of our dataset. 

Platform Description:June 2011 Google launched its own social networking service 

called Google+ (G+). The platform was announced as a new generation of social 

network. Previous works in the literature [20, 21] claim that G+ cannot be classified as 
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particularly asymmetric (Twitter-like), but it is also not as symmetric (Facebook-like) 

because G+ features have some similarity to both Facebook and Twitter. Therefore, 

they labelled G+ as a hybrid online social network[20]. Similar to Twitter (and different 

from Facebook) the relationships in G+ are unidirectional. In graph-theoretical terms, if 

user1 x follows user y this relationship can be represented as a directed social edge (x, y); 

if user y also has a directed social edge (y,x), the relationship x, y is called symmetric[?]. 

Similar to Facebook, each user has a stream, where any activity performed by the user 

appears (like the Facebook wall). For more informations about the features of G+ the 

reader is referred to [59, 60]. 

Dataset: we obtained our dataset from an earlier study on G+ [21], so no proprietary 

right can be claimed. The dataset is a collection of 12 directed graphs of the social 

links of the users2 in G+, collected from August, 2012 to June, 2013. We used BFS to 

extract the Largest Weakly Connected Component(LWCC) from all of our snapshots 

of G+. We label these set of LWCCs as subgraphs Ωi (for i = 1, ..., 12). Since LWCC 

users form the most important component of G+ network[21], we extract the reciprocal 

network of G+ from the Ωi subgraphs (see Sect. 3.3). However, for consistency in our 

analysis, we removed from the subgraphs Ωi=1,...11 those nodes that do not appear in 

our last snapshot at Ω12 . Table 1 summarizes the main characteristics of the extracted 

Ωi . 

3.3 Methodology & Basic Notations 

In this section, we describe our methodology to extract the reciprocal network of G+. 

To derive the reciprocal network of G+, we proceed as follows: we extract the subgraphs 

composed of nodes with at least one reciprocal edge for each of the snapshots of Ωi . We 

label these new subgraphs Gi (for i = 1, 2, ..., 12). By comparing the set of nodes and 

edges in each of the sugbraphs Gi , we observe that a very small percentage of nodes 

depart Gi as it evolves (unfollowing behaviour [?]). Therefore, for consistency in our 

analysis, we removed from the subgraphs Gi=1,...11 those nodes that don’t appear in 

our last snapshot at G12 . We label these new set of subgraphs Li (for i = 1, 2, ..., 12). 

1In this paper we use the terms “user” and “node” interchangeable 
2G+ assigns each user a 21-digit integer ID, where the highest order digit is always 1 (e.g., 

100000000006155622736) 
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Table 3.1: Main characteristics of G+ dataset 
ID # nodes # edges Start-Date Duration 

Ω1 66,237,724 1,291,890,737 24-Aug-12 17 
Ω2 69,454,116 1,345,797,560 10-Sept-12 11 
Ω3 71,308,308 1,376,350,508 21-Sept-12 13 
Ω4 73,146,149 1,406,353,479 04-Oct-12 15 
Ω5 76,438,791 1,442,504,499 19-Oct-12 14 
Ω6 84,789,166 1,633,199,823 02-Nov-12 35 
Ω7 90,004,753 1,716,223,015 07-Dec-12 40 
Ω8 101,931,411 1,893,641,818 16-Jan-13 40 
Ω9 114,216,757 2,078,888,623 25-Feb-13 35 
Ω10 125,773,639 2,253,413,103 01-Apr-13 25 
Ω11 132,983,313 2,356,107,044 26-Apr-13 55 
Ω12 145,478,563 2,548,275,802 20-Jun-13 N/A 

However, Li is not a connected subgraph. Hence, we use BFS to extract the Largest 

Weakly Connected Component (LWCC) for each of the snapshots of Li=1,..12 . We label 

these extracted LWCCs as subgraphs H i (for i = 1, 2, ..., 12). 

In this paper, we consider subgraph H i as the “reciprocal network” of G+ 3 . In the 

next sections, we will focus our analysis on the structural properties and evolution of 

H i . To achieve this, we extract subgraphs Hj
i composed of the set of users that join the 

network at snapshot i and j represents this subgraph at specific snapshots (j => i). 

Let ΔH i+1 denote the subgraph composed with the set of nodes that join subgraph 

Hj
i at snapshot j = i + 1. Then, we define the following relationship (see Table 3.2 and 

Fig. 3.2): 

H i+1 = H i ∪ ΔH i+1 (3.1) 

In the following sections, we use subgraphs ΔH i+1 , Hj
i and (3.1) to analyse the 

reciprocal network of G+. For clarity of notation, we sometimes drop the superscript i 

and subscript j from the above notations, unless we are referring to specific snapshots 

or subgraphs. 

3It contains more than 90% of the nodes with at least one reciprocal edge in G+. Hence, our analysis 
of the dataset is eventually approximate. 
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Table 3.2: Summary of Notations 
Ωi snapshots of the LWCC of G+ 

Gi 
snapshots of the subgraphs composed 
with nodes with at least one mutual edge 
derivated from Ωi 

Li 
snapshots of the subgraphs derived 
from Gi by removing all the nodes 
that depart from Gi 

H i snapshots of the LWCC of Li 

ΔH i+1 
j 

subgraph composed with the set of nodes 
that join subgraph H i at snapshot j = i + 1 

i subgraph index for i=1,...,12 
j snapshot index for j=1,...,12 

Figure 3.2: Notations Graph: illustration of the relationship between subgraphs ΔH i+1 , 
H i and parameters i and jj 

3.4 Reciprocal Network Characteristics & Its Evolution 

In this section, we present a comprehensive characterization of the connectivity and 

evolution of the reciprocal edges in G+, in order to shed an insightful light on the 

structural properties of the reciprocal network of G+. To achieve this, we proceed as 

follows: a) we provide a brief overview of the structural properties of the reciprocal 

network; b) we analyse the evolution of the density of the reciprocal network and c) we 

categorize the nodes joining the reciprocal network and their edges respectively. 
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Figure 3.3: Growth in the number of nodes and edges in H 

3.4.1 Overview of the Reciprocal Network 

We start by providing a brief overview of some global structural properties of the recip-

rocal network of G+, more precisely, the growth of its number of nodes and edges, as 

well as, its degree distributions: 

Nodes and Edges: Figure 3.3 plots the number of nodes (left axis) and edges (right 

axis) across time. We observe that the number of nodes and edges increase (almost) 

linearly as H i evolves. The only exception is between H i snapshots 5-6 (19.Oct.12 − 

02.Nov.12), where we observe a significant increase in the number of nodes and edges. 

The time of this event correlates with the addition of a new G+ feature, on 31.Oct.12, 

that allows users to share contents created and stored in Google Drive[61] directly into 

the G+ stream, as reported in[61]: “share the stuff you create and store in Google 

Drive, and people will be able to flip through presentations, open PDFs, play videos 

and more, directly in the G+ stream”. Our dataset shows the impact of this event in 

G+: it attracts more users to join G+ and many of these users might have already been 

using Google Drive in the past. 

In-degree, Out-degree and Mutual Degree Distributions: Figure 3.4 shows the 

CCDF for mutual degree, in-degree and out-degree for nodes in subgraphs H i . We can 

see that these curves have approximately the shape of a Power Law distribution. The 

CCDF of a Power Law distribution is given by Cx−α and x, α,C > 0. By using the tool 

in [?, ?], we estimated the exponent α that best models our distributions. We obtained 

https://31.Oct.12
https://02.Nov.12
https://19.Oct.12
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α = 2.72 for mutual degree, α = 2.41 for out-degree and α = 2.03 for in-degree. We 

observe that the mutual degree and out-degree distributions have similar x-axis range 

and the out-degree curve drops sharply around 5000. We conjecture this is because G+ 

maintains a policy that allows only some special users to add more than 5000 friends to 

their circles [55]. 

The observed power law trend in the distributions implies that a small fraction of 

users have disproportionately large number of connections, while most users have a 

small number of connections - this is characteristics for many social networks. We also 

observe that the shape of the distributions have initially evolved as the number of users 

with larger degree appeared. 
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(c) Out-degree distribution 

Figure 3.4: Log-log plot of a) mutual degree, b) in-degree and c) out-degree complemen-

tary cumulative distribution functions (CCDF) for several snapshots of the reciprocal 

network of Google+ (subgraphs Hi, i=1,2 and 3). All distributions show properties 

consistent with power-law networks. 



22 

Hi(a) Density evolution -

(b) Density evolution - Ω 

Figure 3.5: Evolution of the Density for graphs Ω and H 

3.4.2 Density Evolution & Nodes Categories 

In this section, we analyze the evolution of the reciprocal network in terms of its density, 

and categorize the nodes joining the reciprocal network based on the (observed) time 

they joined the network. Next, we present our analysis: 

Density: Figure 3.5(a) shows the evolution of the density of subgraph H i , measured as 

the ratio of links-to-nodes4 . We observe that as subgraph H i=1,..12 evolves its density 

decreases. However, if we fix the number of nodes for each of the snapshots of H i 

and analyse their evolution, we observe that the density is increasing (see Fig. 3.5(a)). 

4We follow the terminology in [?] in order to compare with previous results 



23 

From these results, we conclude that the new users (ΔH i+1) joining subgraphs H i 

are responsible for the observed decrease in the density. Because these users initially 

create few connection when they join H i (cold start phenomenon). However, the longer 

these users stay in the network, they discover more of their friends and consequently 

they increase their number of connections (edges). From the slopes of the graphs in 

Fig. 3.5(a), we observe that the new users are creating fewer links than the new users in 

the previous generation. Here, we define “previous generation” as the set of new users 

in the anterior snapshot, for example: the previous generation for new users in ΔH3 

are the users in ΔH2 . 

We also observe that the percentage of total users with at least one reciprocal edges 

in G+ decreases from 66.7% to 54.1% as the network evolves. Consequently, in our 

analysis, we also observe that the global reciprocity of G+ decreases (almost) linearly 

from 33.9% to 25.9%. From these results, we extract some important points: a) the 

number of users creating at least one reciprocal edge is decreasing as the network evolves 

and b) the new users joining the reciprocal network are creating fewer edges than the 

users in the previous generation. Thus, the new users in G+ are becoming less social. 

Previous studies on social networks show that the social density for Facebook[?] 

and affiliation networks[?] increases over time. However, it fluctuates on Flickr[?] and 

is almost constant on email networks[?]. Differently, our dataset shows that the so-

cial density of G+ and of its reciprocal network (Fig. 3.5(a) and Fig. 3.5(b)) decrease 

as the network evolves. This is an interesting observation because it contradicts the 

densification power law, which states that real networks tend to densify as they grow[?]. 

The authors in [20] analysed the evolution of the social density of G+ using a dataset 

collected in the first year of its existence (06.Jun.11 − 11.Oct.11). They reported that 

G+ social density fluctuates in an increase-decrease fashion in three phases, but it 

reaches a steady increase in the last phase[20]. Differently, our results shows that the 

social density of G+ is decreasing as the network evolves from its second to third year of 

existence – the only exception is between snapshots 5 to 6, due to the events discussed 

in Sect. 3.4.1. 

Node Categories: we classify the nodes joining H into the following categories (for 

clarity of notations we drop the superscript i and subscript j): 

• Ω: node “x” exists in subgraph Ω at snapshot j − 1 and joins H at snapshot j 

https://11.Oct.11
https://06.Jun.11
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(a) Total number of nodes joining Hi per category 

(b) Total number of new edges per category created in Hj 
2 for each of j 

snapshots 

Figure 3.6: Nodes and edges categories for subgraph H 

• G: node “x” exists in subgraph G at snapshot j − 1 and joins H at snapshot j 

• L: node “x” exists in subgraph L at snapshot j − 1 and joins H at snapshot j 

• NewArrival: node “x” does not exist in the system at snapshot j − 1 and joins 

both Ω and H at snapshot j 

Figure 3.6(a) shows the distribution of the nodes joining H by categories. We 

observe that on average 63% of the nodes joining the subgraph H are new users in 

the system, 29% comes from the subgraph Ω and the remaining percentage comes from 
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Figure 3.7: Categories of the edges in subgraph H i (for i=1,...,12) 

either subgraphs G or L. From these results we infer the following: a) the majority of 

users that are joining the reciprocal network of G+ are new users in the system; b) if 

a user doesn’t create a reciprocal edge when he/she joins G+, it is very unlikely that 

he/she will ever reciprocate a link in the network. 

3.4.3 Edge Categories & Its Evolution 

In order to understand the connectivity between the nodes in the reciprocal network, 

we analyse the evolution of the reciprocal edges in H i . To achieve this, we restrict 

our analysis5 to the subgraphs H1 and H2 . Firstly, we present our edges categories. 

Secondly, we analyse the evolution of the degree distribution for each edge category: 

Edges Categories: we classify the edges created by nodes joining H i into the following 

three categories (see Fig. 3.7 for an illustration): 

• Category 1: e(u, v) such that u ∈ ΔH i+1 and v ∈ H i 

∗• Category 2: e(u, v) such that u ∈ ΔH i+1 and v ∈ ΔH i+1 and ∃v ∈ H i : e ∗(u, v ∗) 

• Category 3: e(u, v) such that u ∈ H i and v ∈ H i 

Figure 3.6(b) shows the distribution of the edges based on the defined categories. We 

observe that most of the new edges seen across all snapshots of Hj 
2 are due to category 3 

5Similar results are obtained using the other subgraphs (Hi=3,...,12) 
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edges. Furthermore, by looking at the last snapshot of H i (for i = 12), we observe that 

69% of the edges in H12 are between nodes in H1 only. This result shows that although12 

the density decreases as subgraph H i evolves, the connectivity of a subset of its nodes is 

increasing (densification) and their connectivity accounts for a huge percentage of the 

total edges in the system. 

Degree Distribution: Figure 4.13 shows the degree distribution for all categories of 

edges and how they evolve across time. Figure 3.8(a) shows the CDF of the degree 

distribution for category 1 edges. From this figure, we observe that when new nodes 

(ΔH2) join H2
1 , initially they create few connections, but the longer they stay in the 

system the number of connections to nodes already in the system increases significantly 

(as stated in Sect. 3.4.2). Furthermore, from our dataset, we observe that 72% of the 

nodes in ΔH2 have only connections (edges) to nodes already in the system (H2
1). 

Figure 3.8(b) shows the CDF for the degree distribution of category 2 edges. From 

the results of Fig. 3.8(a) and Fig. 3.8(b), we infer that when new nodes (ΔH2) join 

H2
1 , they create more connections with the nodes already in the system. Figure 3.8(c) 

shows the degree distribution for edges of category 3. We observe that the shape of the 

degree distribution is decreasing which implies that the network is become more dense 

(densification), as discussed above. 

In summary, our analysis on the categories of nodes and edges yields the following 

key findings: a) the majority of users that joins the reciprocal network of G+ are new 

users in the network and they tend to create reciprocal connections mostly to users who 

already have reciprocal connections to others; b) if a user does not create a reciprocal 

edge when he/she joins G+, there is a lower chance that he/she will create one later. 

3.5 Implication of our Results for G+ & Conclusion 

In this paper, we present the first study on the properties and evolution of a “reciprocal 

network”, using a massive G+ dataset. Analyzing the connectivity of reciprocal edges 

is important because they are the most stable type of connections in directed network 

and they represent the strongest ties between nodes: users with large number of mutual 

edges are less likely to depart from the network and they may form the most relevant 
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(a) Category 1 

(b) Category 2 

(c) Category 3 

Figure 3.8: Degree distribution per edge category 
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community structure6(the intimacy community [19]) in directed OSN networks. Our 

analysis show that the reciprocal network of G+ reveals some important patterns of 

the user’s behavior, for example: new users joining G+ are becoming less social as 

the network involves and they tend to create reciprocal connections mostly to users 

who already have reciprocal connections to others. Understanding these behaviors is 

important because they expose insightful information about how the social network is 

being adopted. 

The findings here also provide hints that can help explain why G+ has so far failed 

to compete with Twitter and Facebook, as recently reported [62]. Firstly, we observe 

that although the numbers of nodes and edges increase as G+ evolves, the density 

of the network is decreasing. This result supports the claim that some users joined 

G+ because they need to access some of Google products but they weren’t interested 

in creating connections in the network, in contrast to users in Twitter. Secondly, we 

observe a decrease in the reciprocity of G+ because the percentage of users with at 

least a reciprocal edge decrease as the network evolved. Furthermore, the users that 

joined the reciprocal network later always create fewer connections than the users who 

joined earlier. From this result, we infer that many users do not use G+ to connect 

and chat with friends, in contrast to users in Facebook7 . Therefore, in its second year 

of existence, the G+ social network was already showing “signs” that it was failing to 

compete with others online social network, such as Twitter and Facebook. Many of 

the studies in the literature about G+ [55], [20, 21], [?] were done using dataset mostly 

collected in the first year of G+ existence. Thus, they either did not observe or failed 

to see these signs. 

Our work is only a first step towards exploring the connectivity of reciprocal edges in 

social and other complex networks – reciprocal networks. There are several interesting 

directions for future work that we will pursue to uncover the properties of reciprocal 

networks so as to further understand the structural properties of directed graphs. 

6We will analyse the community structure in a reciprocal network as future work 
7The authors in [21] stated similar conclusion 



Chapter 4 

Uncovering the Nucleus of 

Complex Networks 

4.1 Introduction 

Networks are often abstractly modelled as a graph where vertices represent entities and 

edges capture the relations (e.g., connections) or interactions between them. In the con-

text of (online) social networks, community identification has received a lot of attention. 

A community is often considered to be a subset of vertices that are densely connected 

internally but sparsely connected to the rest of the network [25, 26, 27, 28, 29]. The 

majority of studies on identifying communities structures in social networks have relied 

on clustering techniques, namely, by partitioning the underlying network/social graph 

into disjoint (sometimes overlapping) communities. For example, Newman proposes a 

measure of betweenness – modularity [27, 28] – for identifying disjoint communities in 

a social network. Andersen et al [29] design a local graph partitioning algorithm to 

indentify community structures. This algorithm is based on personalized PageRank 

vectors. Ahn et al [63] introduce a novel perspective for discovering hierarchical com-

munity structures by categorizing links only. To obtain an optimal partition and to 

find communities at multiple levels, an information-theoretic framework is proposed by 

the authors in [64, 65]. Several studies use link and content information for uncovering 

meaningful communities in networks [66, 67]. 

Although existing studies of community structure have been very successful, most 
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have not considered the existence of “core structure” in many networks. Intuitively, one 

expects that many social networks possess some sort of “core” as part of their meso-

scale structure, which holds various parts of the network (or constituent “communities” 

) together. We believe that it is just as important to uncover and extract the “core” 

structure – referred to as the “nucleus” – of a social network as identify its community 

structure [68, 69]: unlike “ordinary” constituent communities, the “core” structure 

plays a crucial role in the formation and evolution of a social network, to which other 

(constituent) “communities” are attached. Chung and Lu [70] show that power-law 

random graphs almost surely contain a core “subgraph” when the exponent β in the 

power-law degree distribution is such that β ∈ (2, 3). This theoretical result suggests 

that many real-world social networks likely posess some sort of cohesive core structure. 

One of the most popular notion of network core is given by the k-shell decomposition 

method [1]. This classical graph decomposition technique decomposes a network into 

hierarchically ordered layers from the periphery to the core. This method has also be 

extended to weighted graphs [71, 72] and dynamic networks [73]. The k-shell decompo-

sition method has often been used as a visualization tool for studying the core structure 

of massive complex networks such as the Internet [1]. In addition, it has been used to 

identify influential spreaders in a network [74, 75]. 

When applying the standard k-shell decomposition to uncover the core of several 

example social networks (see § ??), we find that the resulting “innermost” structure 

is unlikely to represent the “core” of these networks. For example, this “innermost” 

structure may contain the maximum clique of a network but which lies rather at its 

periphery, or it is simply a single vertex in a dense graph. This appears to the effect 

of the (iterative) degree-based pruning process of k-shell decomposition, where despite 

at some point we reach the vicinity of the core, the k-shell decomposition continues 

further, which then destroys the “core” structure of the network (see § 4.3 for more 
illustration). This raises the following important question: When should we stop the k-

shell decomposition pruning process in order to preserve the core graph GC of a network? 

In an attempt to address this question, we develop an effective procedure to uncover 

the nucleus structure of a social network by building upon and generalizing ideas from 

the existing k-shell decomposition [1] approach, as follows. Firstly, we propose a new 
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metric, the dependence value, that measures the location importance of a node in a net-

work. Intuitively, the dependence of node v captures the number of nodes recursively 

dependent of v that have been removed in earlier steps of the k-shell decomposition 

method. Secondly, we derive a new measure called nucleon-index (NI) that captures the 

extend to which a subgraph is a densely intra-connected and topological central core. 

This index can be used with a wide variety of functions to transition between core and 

peripheral nodes (e.g., dependence value, closeness [76] and betweenness [76] centrali-

ties, etc). Using these metrics, we therefore modify the standard k-shell decomposition 

method to stop the process earlier, in order to extract a meaningful “core” for social 

networks (see § 4.4). For a Facebook [77, 78] friendship network composed of 63,731 

nodes and 817,035 edges, this process yields a dense “core” subgraph GC with approxi-

mately 285 nodes and 9,616 edges. Given a dense core subgraph GC , we investigate the 

importance of this substructure for the network by analysing the following metrics (see 

§ 4.5): i) the distance between a node v to the core subgraph GC ; ii) the ratio of the 

distance between nodes u and v to their respective distance to GC and iii) lastly, the 

impact of removing GC in the structure of the network G (GC ⊂ G). 

We extend our definition of nucleon-index for massive complex networks and discuss 

implications in § 4.6 and § 4.7. Section 4.8 concludes the chapter. We summarize the 

major contributions of our paper as follows: 

• We show that applying the conventional k-shell decomposition method to some 

complex networks produces inner-most structures that are not the “core” of these 

networks. 

• We propose two new metrics: i) the dependence value, that measures the location 

importance of a node in the network; ii) the nucleon-index (NI) that captures the 

extend to which a subgraph is a densely intra-connected and topological central 

core . Using these metrics, we therefore modify the standard k-shell decomposition 

method to stop the process earlier, in order to extract a meaningful “core” for 

social networks. 

• We apply our approach to uncover the core structure in example communication, 

computer, infrastructure, human-contact, collaboration, interaction, location-based 

and online social networks. 
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• We extend our definition of nucleon-index to extract the core structure of massive 

networks (hundreds million nodes and billion edges). Furthermore, we show the 

effectiveness of our approach by applying it to uncover the core structure of the 

reciprocal network of a massive Google+ dataset (with more than 40 million nodes 

and close to 200 million edges). 

4.2 Datasets 

This section presents a summary of the datasets that we use for our analysis: 

Autonomous systems graph: This dataset are undirected graphs of the AS peer-

ing information inferred from Oregon route-views and CAIDA projects: Oregon-1 [79], 

Route views [80, 81], CAIDA [82, 80] and Internet [83, 84]. Table 4.1 summarizes the 

main features. 

Infrastructure systems graphs: This dataset is a collection of 3 undirected graphs 

of infrastructure systems [85, 86, 87, 88, 89]: 

• Euro-road: European international E-road network – a graph contains an undi-

rected edge (i, j), if city i is connected by E-road to city j. 

• US airports: it is an undirected network of flights between US airports in 2010. 

Each edges (i, j) represents a connection from one airport to another, in 2010. 

• OpenFlights: it is an undirected network of flights between airports of the world. 

An edge (i, j) represents a connection from one airport to another. 

Social networks graphs: This dataset is a collection of 9 undirected graphs of com-

munication, collaboration, interaction, human contact, location-based and online social 

networks [79, 77, 90, 78, 91, 92, 93, 94, 95, 96, 97, 98, 99](see Table 4.1 for a summary 

of the main features): 

• ca-AstroPh, ca-HepPh, ca-CondMat: collaboration networks between authors for 

papers submitted to Astro Physics, High Energy Physics (Phenomenology cate-

gory) and Condense Matter Physics – a graph contains an undirected edge (i, j), 

if author i co-authored a paper with author j. 
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• arenas-jazz: collaboration network between jazz musicians – the graph contains 

an undirected edge (i, j), if two musicians have played together in a band. 

• email-Enron: email communication network – the graph contains an undirected 

edge (i, j), if address i sent at least one email to address j. 

• arenas-pgp: interaction network of users of the Pretty Good Privacy (PGP) algo-

rithm. 

• train bombing: human contact network between suspected terrorists involved in 

the March 11, 2004 Madrid train bombing – the graph contains an undirected 

edge (i, j), if two terrorists were in contact. 

• infectious: human contact network of people during the exhibition ”Infectious: 

Stay Away” (2009) – the graph contains an undirected edge (i, j), if two exhibition 

visitors had face-to-face contacts that were active for a least 20 seconds. 

• dnc-corecipient: online contact network for people having received the same email 

in the 2016 Democratic National Committee email leak – the graph contains an 

undirected edge (i, j), if two persons received the same email. 

• Facebook: an undirected subgraph of the friendship network for the users in Face-

book. 

• loc-brightkite: an undirected graph for the friendship network for the users from 

loc-brightkite location-based online social network. 

“Massive” social network graphs: this dataset1 is a collection of three massive 

directed graphs of the social links of the users in G+, collected between August, 2012 

and June, 2013. Table 4.2 summarizes the main features of this dataset, where each 

snapshot represents a complete graph of the social relations among all users in G+. In 

these dataset, a node represents an user and if user i x follows user j this relationship 

can be represented as a directed social edge (i, j); if user j also has a directed social 

edge (j, i), the relationship j, j is called reciprocal. 

1We obtained our dataset from an earlier study on G+ [100] 
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Table 4.1: Main characteristics of the social networks and AS graphs: d - node degree; 
% LCC - percentage size of the largest connected component of the original network 

ID # nodes # edges max(d) % LCC 

train bombing 64 243 29 1.00 
arenas-jazz 198 2,742 100 1.00 
infectious 410 17,298 294 1.00 

dnc-corecipient 906 20,858 368 0.94 
Euro-road 1,174 1,417 10 0.89 
US airports 1,574 28,236 596 1.00 
OpenFlights 2,939 30,501 473 0.99 
Route views 6,474 13,895 1,549 1.00 
arenas-pgp 10,680 24,316 205 1.00 
Oregon-1 11,174 23,409 2,389 1.00 
ca-HepPh 12,008 118,521 491 0.93 
ca-AstroPh 18,722 198,110 504 0.95 
ca-CondMat 23,133 93,497 280 0.92 
CAIDA 26,475 53,381 2,628 1.00 
Internet 34,761 171,403 5,305 1.00 

email-Enron 36,692 183,831 1,383 0.92 
loc-brightkite 58,228 214,078 1,134 0.97 
Facebook 63,731 817,035 1,098 0.99 

Table 4.2: Main characteristics of Google+ snapshots: (start-date, duration) – Γ1: (24-
08-12, 17 days), Γ2: (10-09-12, 11 days) and Γ3: (20-06-13, N/A) 

ID # nodes # edges max(in) max(out) 

Γ1 66,237,724 1,291,890,737 2,289,874 9,981 
Γ2 69,454,116 1,345,797,560 3,463,060 9,872 
Γ3 145,478,563 2,548,275,802 5,089,789 10,840 
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Figure 4.1: A schematic representation of a network under k-shell decomposition: the 
network can be viewed as the union of shell 1 up to kmax = 3 (network core). 

4.3 k-shell network core 

K-shell decomposition [1] is one of the most popular and scalable method to investigate 

and visualize the core-periphery structure in complex networks. This method assigns to 

each node an integer representing its coreness location according to successive layers or 

shells in the network. It works as follows: a) first, remove all nodes in the network with 

degree 1 (and their respective edges) – these nodes are assigned to the 1-shell; b) more 

generally, at step k = 2, . . ., remove all nodes in the remaining network with degree k 

or less (and their respective edges) – these nodes are assigned to the k-shell; and c) the 

process stops when all nodes are removed at the last step. Small values of k define the 

periphery of the network and the innermost network core corresponds to the highest 

shell index (kmax) – see Fig. 4.1. (Note that this is distinct from k-core decomposition2 

defined in the literature [101, 102]). 

In the k-shell decomposition process, at each step k, the remaining subgraph is 

referred to as “k-core” (Ck). The k-core subgraph is the union of all shells with indices 

larger or equal to k or it is the maximal induced subgraph Ck ⊆ G such that if v ∈ Ck, 

then node v must have at least k +1 neighbors that belong to Ck−1 and degk(v) > 0 (we 

use deg(v) to denote the degree of v in the network and degk(v) to denote the degree 

of v in Ck). Similarly, k-shell (Sk) can be defined as the subgraph induced by the set of 

2Which simply removes all nodes with degree less than k in a graph. 
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nodes with dk−1(v) ≤ k and if v ∈ Sk → degk(v) = 0 . 

Clearly, for a node to belong to the k-core (thus shell(v) ≥ k), it must have at 

least degree k, i.e., deg(v) ≥ k. However, deg(v) ≥ k is not sufficient to guarantee it 

to belong to the k-core. For example, a node v with only neighbors of degree 1 (i.e., v 

is the root of a star structure) belongs to the 2-shell, i.e., shell(v) = 2, no matter how 

high its degree is. On the other hand, it is easy to see that if a node v is part of a clique 

of k nodes, then shell(v) ≥ k. However, a node v does not need to be part of a k-clique 

to have shell(v) ≥ k. Consider a tree T of n nodes (the sparsest graph with n nodes). 

We can in fact provide a complete characterization of nodes in T to have shell(v) ≥ k 

in a recursive manner: for v to have shell(v) ≥ k, it must have at least k-neighbors u’s 

with shell(u) ≥ k − 1 – this characterization also applies to a general graph. We see 

that in the case of a tree, nodes with higher k-shell indices must lie more at the “core” 

(i.e., the increasingly “denser” part) of the tree. For a general graph, however, a node 

with a high k-shell index may not lie at the “core” of the graph: it can be part of a 

large clique that is “isolated” on a periphery of a massive graph. In such a case, the 

large clique will break off from the “core” of the network (e.g., as represented by the 

largest connected component remaining in the k-core) in the early stage of the k-shell 

decomposition process. 

This method has been successfully used as a visualization tool for studying and 

uncovering the core structure of networks such as the Internet AS graph [1]. We apply 

it to the Oregon-1 AS dataset. Fig. 4.2(a) shows the size of the largest as well as those 

of the 2nd, 3rd and 4th largest connected components in the k-core graph. We observe 

that the largest connected component decreases smoothly as k varies from 1 to 20. At 

kmax = 20, we are left with a very dense core subgraph composed of 20 nodes and 164 

edges – the network nucleus. This result shows that for the AS graph, nodes with the 

highest k-shell indices indeed lie at the “core” (i.e., the increasingly “denser” part) of 

the graph. However, our experiments reveal that applying the k-shell decomposition for 

other types of graphs, especially social graphs, may not yield the same results. There 

are two possible reasons: 

First, for some graphs the kmax-shell seems to contain some “residual” portions of 

the nucleus of a graph or simply a singleton node. For example, Fig. 4.2(b) shows the 

k-core graph for the 4 largest connected components in the ca-AstroPh dataset. We 
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see that at kmax=57, we are left with just a single node in the k-core graph, which 

is unlikely to be the complete inner-core of the graph. Second, in other graphs the 

kmax-shell does not appear to lie at the “core” of the graph: it could be part of a large 

community structure (e.g. a maximum clique) that is “isolated” on a periphery of a 

graph. To illustrate this, we apply the k-shell decomposition method to a Google+ 

reciprocal network3 obtained from a previous study [14, 11] - it consists of more than 

40 million nodes and ≈ 400 million edges. Figure 4.2(c) shows the size of the largest as 

well as those of the 2nd, 3rd and 4th largest connected components in the k-core, as k 

varies from 1 to 308. We note that at step k = 121, a small subgraph containing the 

maximum clique (of size 290) breaks off from the largest connected component which 

desolves after k = 253, whereas this subgraph containing the maximum clique persists 

after k = 252 and becomes the largest component; at kmax = 308, we are left with this 

maximum clique plus 10 additional nodes that are connected to the maximum clique. 

Closer inspection of the nodes in the maximum clique reveals that its users belong to 

a single institution in Taiwan, forming a close-knit community where each user follows 

everyone else – which is unlikely to be the network core of Google+. 

From these results, we see that directly applying the standard k-shell decomposition 

to some graphs (especially, social networks) produces an “innermost” structure that 

does not represent “core” of these networks. This is due to the fact that at a certain 

k-index, we reach the vicinity of the core; but going far beyond this index would destroy 

the core structure of the network. 
3A network composed with only bi-drectional edges, extracted from a directed social graph. A 

reciprocal network can be viewed as the stable “skeleton” network of a directed social network that 
holds it together and encodes its main topological characteristics [14]. For more on the reciprocal 
network of Google+ the reader is referred to [14, 11]. 
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(a) Oregon-1 

(b) ca-AstroPh 

(c) Google+ 

Figure 4.2: The size of the largest as well as those of the 2nd, 3rd and 4th largest 

connected components in the k-core subgraphs 
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4.4 Node Depencence Values and Network Core 

In order to extract a meaningful “core” for a general graph G = (V, E) (e.g., social 

networks), we therefore modify the standard k-shell decomposition method to stop the 

process earlier. To achieve this, we propose a new metric that provides important 

information about the structural function of each node in the graph (we label it as 

“dependence” value) at each k-step. Then, we present a new measure called nucleon-

index (NI) that captures the extend to which a subgraph is a densely intra-connected 

and topological central core – it can be used with a wide variety of functions to transition 

between core and peripheral nodes (e.g., dependence value, closeness and betweenness 

centralities, etc). 

4.4.1 Node Depencence Values 

The dependence value of node v at step k is defined as follows: for v ∈ V , dep0(v, β) = 0 

and for k = 1, . . . , c(v), 

depk(v, β) := depk−1(v, β) + δk(v) + β × Σu∈Nk (v)[dep
k−1(u, β)] (4.1) 

where β is a control parameter, 0 ≤ β ≤ 1; Nk(v) is the set of neighbors of node v that 

are removed at step k, and δk(v) = |Nk(v)|. The dependency of node v is recursively 

defined by measuring the number of nodes u (the h-hop neighbors of v, h = 1, ..., k) that 

are removed in earlier steps up to k = c(v) –the coreness of node v (and for k ≥ c(v), 

by convention, we define depk(v, β) = depc(v)(v, β)). 

Intuitively, depk(v, β) captures the number of nodes recursively dependent on v that 

have been removed in earlier steps up to k. With β = 0, we note that depk(v, β) 

captures the number of v’s neighbors removed at each step up to k, and for k ≥ c(v),P 
depk(v, β) = δk(v) = deg(v), the degree of node v. With β > 0, depk(v, β) captures k 

not simply the dependence of its neighbors, but that of its neighbors’ neighbors, and so 

forth. However, the number of nodes u removed at each step up to k does not influence 

the dependence value of the node v uniformly. Their contribution is weighted by the 

parameter β in eq.(4.1). The parameter β quantifies the contribution of node u to 

the total dependence value of node v. More precisely, at the kth-step, we multiply the 

number of h-step removed neighbors of v by βh−1 (see the proof in the appendix). Thus, 
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Table 4.3: Arenas − jazz: peak nucleon-indices (NI) and their respective kC -indices 
(set SK) and β values 

β max(NI) kC 

0.0 0.011019 26 
0.1 0.006561 25 
0.2 0.006125 24 
0.3 0.006841 24 
0.4 0.007256 24 
0.5 0.007500 24 
0.6 0.007818 25 
0.7 0.008545 25 
0.8 0.009222 25 
0.9 0.009849 25 
1.0 0.010433 25 

the further a node u is to node v, the less it will contribute to the total dependence 

value of node v. Hence, a node v having more nodes u with high dependence values in 

its vicinity will also have a high dependence value, creating the dependency propagation 

effect. Therefore, we posit that the network core should contain only nodes with very 

high dependence because the depk(v, β) values of any v ∈ V grows as k increases (more 

nodes are removed as we move from the periphery of the graph to its core). In the next 

section, we use the dependence value of node v as a measure of its coreness. 

4.4.2 Nucleon Index and Network Nucleus 

To derive a meaningful “core” structure in social networks, we postulate that the nucleus 

of a network G(V, E) is an induced subgraph GC having the following properties: 

1. Subgraph GC (VC , EC ) is connected and composed of a collection of nodes in G 

with dense aggregate centralities by some measure. 

2. The set VC is fundamental for the structural properties of the network, e.g., in 

terms of connecting nodes via short paths through the network. 

3. GC is the minimal subgraph with these properties. 
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(a) Oregon-1 

(b) ca-AstroPh 

(c) arenas-jazz 

Figure 4.3: Variation of the nucleon-index per k-core index for several β parameters in 
the dependence computation: Oregon-1, ca-AstroPh and arenas-jazz 
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(a) Route views 

(b) OpenFlights 

(c) US airports 

Figure 4.4: Variation of the nucleon-index per k-core index for several β parameters in 
the dependence computation: Route views, OpenFlights and US airports 
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To find a subgraph GC with the above properties, we consider an appropriately 

defined “decomposition” process (e.g., the k-shell decomposition) which yields a (filtra-

tion) sequence of (sub)graphs {Gk}’s of G: G0 := G ⊃ G1 ⊃ · · · ⊃ GK = ∅. Given a 

node centrality measure θ(i), i ∈ V , we define the nucleon-index (NI) to capture the 

extent to which a subgraph constitutes a “densely connected”, topological central core 

in this sequence: 

Vk Ek 1 
NI(Gk, θ(i)) := × × { 

Vk−1 Vk × (Vk − 1) Vk 

X 
× θ(i)}

i∈Gk 

(4.2) 

where by abuse of notation, we use Ek to denote the number of edges between nodes 

in Gk and Vk the number of nodes in Gk (and |VK | = 0). The second term in eq.(4.2) 

measure the density of Gk and the last term the average centrality of Gk. Ideally, if 

Gk is a “dense core” of G, the product of these two terms should be large. The first 

term controls the rate of changes in size from Gk to Gk+1: intuitively, if Gk is the 

“nucleus” of G, going from Gk−1 to Gk should not drastically change its size; but going 

from Gk to Gk+1 amounts to breaking Gk apart, yielding a collection of small connected 

components. In other words, Vk+1 would fall off quickly, as Gk+1 is a small connected 

subgraph or an empty graph. Hence, Gk with the largest NI represents the nucleus of 

G (as produced by the decomposition process). 

Considering the node dependence value as a centrality measure, we define θ(i) as 

follows: 
depc(i)(i, β)

θ(i) := P . (4.3) 
j∈G dep

c(j)(j, β) 

Using θ(i) defined above and applying the nucleon-index to the k-shell decomposition 

procedure, we develop the following stop rule for core extraction. 

Stopping rule for core extraction: For any graph G with a dense core structure, we 

should stop the k-shell decomposition method at the induced subgraph of the kC -core 

with maximal nucleon-index. Thus, we seek a kC -index that maximizes the nucleon-

index (NI). 
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(a) Oregon-1 (b) ca-AstroPh 

(c) arenas-jazz (d) Route views 

(e) OpenFlights (f) US airports 

Figure 4.5: Visualization of the core subgraphs of example networks: the size of a node 

is proportional to its degree. Oregon-1 (32 nodes, 362 edges); ca-AstroPh (126 nodes, 

3,378 edges); arenas-jazz (24 nodes, 144 edges); Route views (18 nodes, 127 edges); 

OpenFlights (42 nodes, 742 edges); US airports (81 nodes, 3,073 edges). 
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Table 4.4: maximum k-shell index (kmax); β parameter; k-index to stop the shells 
pruning process (kC ); number of nodes and edges in the core subgraph N(GC ) and 
E(GC ) 

Network kmax β kC N(GC ) E(GC ) 

train bombing 11 0.5 7 24 144 
arenas-jazz 29 0.6 25 32 466 
infectious 20 0.5 17 29 303 

dnc-corecipient 75 0.5 67 87 3,118 
Euro-road 5 0.5 3 14 16 
US airports 69 0.5 65 81 3,073 
OpenFlights 33 0.5 31 42 742 
Route views 14 0.5 12 18 127 
arenas-pgp 33 0.5 31 38 658 
Oregon-1 20 0.5 18 32 362 
ca-HepPh 238 0.5 99 239 28,441 
ca-AstroPh 57 0.6 53 126 3,378 
ca-CondMat 51 0.5 37 37 382 
CAIDA 26 0.5 23 50 765 
Internet 67 0.5 64 115 4,578 

email-Enron 51 0.5 48 150 4,395 
loc-brightkite 58 0.5 56 66 1,893 
Facebook 64 0.5 61 285 9,616 

Figure 4.4 plots the nucleon-indices per k-core (Ck) for Oregon-1, ca-AstroPh and 

arenas-jazz networks. To select the optimal β parameter for eq. (4.1), we use the 

following criteria: let’s assume that SK is the set of the k-indices corresponding to the 

maximum nucleon-indices, as β varies in the interval [0, 1] and k increases from 1 up 

to kmax. Then, we select any β associated with the k-index which appears most often 

in the set SK. For example, Table 4.3 shows the set SK for arenas-jazz. We select a β 

corresponding to the mode kC -index value of 25 (i.e., β = 0.1; β = 0.6; β = 1.0). 

Table 4.4 shows the (kmax, β, kC ) indices for our social network and Internet AS 

datasets and Fig. 4.5 provides a visualization of our extracted core subgraphs (GC ) for 

several example networks. The smallest subgraph has 32 nodes and 362 edges (Oregon-

1), whereas the largest one has 239 nodes and 28,441 edges (ca-HepPh). We will further 

investigate the structure of these core subgraphs (network nuclei) in the remaining 

sections. 
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Table 4.5: k-index to stop the shells pruning process (kC ) for several centralities: cc 

- closeness centrality; bc - betweenness centrality; ec - eigenvector centrality; dep -
dependence 

kC 

Network θ(i) = cc θ(i) = bc θ(i) = ec θ(i) = dep 

train bombing 7 6 7 7 
arenas-jazz 26 25 26 25 
infectious 16 16 16 17 

dnc-corecipient 68 65 68 67 
Euro-road 3 3 – 3 
US airports 65 65 65 65 
OpenFlights 31 31 31 31 
Route views 12 12 12 12 
arenas-pgp 31 30 31 31 
Oregon-1 18 18 18 18 
ca-HepPh 99 99 99 99 
ca-AstroPh 53 53 53 53 
ca-CondMat 42 37 37 37 
CAIDA 23 23 23 23 
Internet 62 64 64 64 

email-Enron 48 48 48 48 
loc-brightkite 55 48 56 56 
Facebook 60 60 60 61 

4.4.3 Other Centralities and Nucleus 

Nodes are more likely to be part of a network’s core if they have high centrality score 

and if they are connected to other core nodes. Equation (4.2) can be used with a wide 

variety of θ(i) functions to transition between core and peripheral nodes. Thus, it allows 

one to use different ways to compute the nucleon-index (NI) and measure core quality. 

Here, we compute the nucleon-index using some of the most common centrality metrics: 

closeness centrality (cc) [103, 104, 76], betweenness centrality (bc) [105, 103, 76] and 

eigenvalue centrality (ec) [103, 106, 107, 76] – we compare the obtained kC -indices with 

the values computed in the previous section. 

The closeness centrality measures how central a node is in terms of its distance 

(shortest path) from all other nodes [76], while the betweenness centrality for a node 

measures the number of shortest paths that pass through that node [76]. The eigenvalue 
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centrality computes the centrality for a node based on the centrality of its neighbors. 

It is based on the notion that a node should be viewed as important if it is linked to 

other important nodes, where a node importance (or centrality score) corresponds to 

the largest eigenvector of the adjacency matrix [76]. Table 4.5 shows the kC -indices 

for the different centrality measures and Fig. 4.6 and Fig. 4.7 plot the nucleon-indices 

versus k-core indices of several example networks. In general, we observe that all the 

centralities give consistent kC -indices or core structures for our datasets. In particular, 

we observe that our dependence metric, dep(i, β), derives similar core structure when 

compared to the other metrics. From the consistency of the results given by the studied 

centrality metrics, we can infer that our social networks (see § ??) truly have a core 

structure. 

All the centrality metrics discussed here are designed to measure notions of node 

importance in a network. Nevertheless, they have different computational complexity 

and require different network information. For example, the closeness and eigenvalue 

centralities need the full network information and have a high complexity of O(V 3). 

The betweenness centrality has a lower complexity of O(V E) [105]. Our approach 

to calculate the dep(v, β) score for node v is dependent on the k-shell decomposition 

method and degree computation which have a complexity of O(V + E). Then, given 

that the degree and coreness of each node are known, our procedure has a complexity 

of O(E). For a large sparse social network with O(n) edges, this yields a linear time 

algorithm. Therefore, our methodology is highly scalable and can be applied to massive 

networks. 

We compare our methodology to extract core subgraphs to the classical k-shell de-

composition [1], rich club [108, 109] and Holme core [22] methods. Table 4.6 provides 

statistics for the structure of the derived core subgraphs (GC ) for six of our networks 

(i.e., Oregon-1, ca-AstroPh, arenas-jazz, Route views, OpenFlights and US airports) – we 

omit the others networks here due to space constraint. In general, for our dataset, we 

observe that the classical k-shell decomposition method (KS) is bias toward small and 

highly dense core subgraphs, GKS , (i.e., a clique) which may not represent the “network C 

core” (see § 4.3). In contrast, our modified k-shell decomposition method (NI + KS) 

generates larger core subgraphs than KS. In fact, our core subgraphs are supersets of 

GNI+KS ⊃ GKS the cores extracted using KS: C C . When compared to rich-club, we see 
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(a) Oregon-1 

(b) ca-AstroPh 

(c) arenas-jazz 

Figure 4.6: Variation of the nucleon-index (NI) per k-core index for several centrality 
metrics for Oregon-1, ca-AstroPh and arenas-jazz : the value of NI is normalized; the 
k-index to stop the shells pruning process (kC ) corresponds to the max(NI) 
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(a) Route views 

(b) OpenFligths 

(c) US airports 

Figure 4.7: Variation of the nucleon-index (NI) per k-core index for several centrality 
metrics for Route views, OpenFligths and US airports: the value of NI is normalized; 
the k-index to stop the shells pruning process (kC ) corresponds to the max(NI) 
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that for some networks our modified k-shell decomposition method (NI +KS) generates 

core subgraphs of similar size (e.g., Oregon-1). However, our core subgraphs have more 

compact structure: small diameter, small path length and high density. For other net-

works, our methodology generates larger and denser core subgraphs than the rich-club 

method (e.g., US airports). This can be explained due to the fact that the rich-club is 

bias toward nodes with higher degree4 . Differently, our definition of core is more gen-

eral, and it allows low-degree nodes to belong to the core, as long as, they are important 

components in the structure of the network. When compared to Holme-core, we observe 

that our methodology (NI + KS) extracts larger core graphs for some network (e.g., 

Route views, OpenFlights and US airports), while for others it extracts denser and more 

compacted core structures (e.g., Oregon-1, ca-AstroPh and arenas-jazz). 

4.5 Analysis of the Network Core Structure 

Given the dense structures of our core subgraphs, illustrated in Figure 4.5, we now 

investigate the importance of this substructure for the network. To achieve this, we 

define and analyse the following metrics: 

Core Path Length: To understand how much the network core contributes towards 

the small path lengths, we measure how many hops there are between any user to 

the core subgraph: δ(u, GC ) = miny∈GC {d(u, y)}; GC ⊂ G. Figure 4.9 presents the 

core path length and network path length distribuitions for Oregon-1, ca-AstroPh and 

arenas-jazz5 , whereas Table 4.7 shows the average values and the diameter for all the 

networks. From these results, we can see that most users are approximately 4 hops 

away from a random user and at most 2 hops away from the core (GC ), which implies 

that our core subgraphs are important structure for the connectivity of the nodes in the 

network. 

Core Centrality: We now investigate the importance of the core subgraph for commu-

nication and information diffusion in the network. To achieve this, we use the following 

procedure: first, we randomly sample k unique pairs of nodes (u, v). Then, we measure, 

R(u, v), the ratio of the distance between nodes u and v to their respective distance to 

4Rich-club is a group of high-degree nodes in a network that preferentially connect to one another. 
This structure might be the core subgraph for power law networks 

5We obtain similar results for the other datasets. We omit the plots here due to space constraint. 



51 

Table 4.6: Comparing classical k-shell decomposition (KS), Nucleon Index (NI) + 
k-shell decomposition (KS), Rich-Club network core and Holme-Core in real-world 
networks : N - number of nodes; E - number of edges; D - diameter; P - path length; 
ρ - density 

method dataset N E D P ρ 

Classical KS 
Oregon-1 
ca-AstroPh 

20 
17 

164 
136 

2.0 
1.0 

1.14 
1.00 

0.86 
1.00 

arenas-jazz 
Route views 

30 
11 

435 
53 

1.0 
2.0 

1.00 
1.04 

1.00 
0.964 

OpenFlights 
US airports 

29 
51 

385 
1,274 

2.0 
2.0 

1.05 
1.00 

0.948 
1.00 

NI + KS 
Oregon-1 
ca-AstroPh 

32 
126 

363 
3,378 

2.0 
3.0 

1.27 
1.87 

0.73 
0.43 

arenas-jazz 
Route views 

32 
18 

466 
127 

2.0 
2.0 

1.06 
1.17 

0.94 
0.87 

OpenFlights 
US airports 

42 
81 

742 
3,073 

2.0 
2.0 

1.18 
1.05 

0.82 
0.95 

Rich-Club 
Oregon-1 
ca-AstroPh 

37 
82 

314 
994 

3.0 
3.0 

1.57 
1.80 

0.47 
0.30 

arenas-jazz 
Route views 

48 
21 

536 
125 

3.0 
3.0 

1.56 
1.44 

0.48 
0.60 

OpenFlights 
US airports 

45 
73 

587 
2,343 

3.0 
2.0 

1.41 
1.11 

0.59 
0.89 

Holme-Core 
Oregon-1 
ca-AstroPh 

33 
2,827 

365 
78,870 

2.0 
6.0 

1.31 
2.88 

0.69 
0.02 

arenas-jazz 
Route views 

46 
5 

659 
10 

2.0 
1.0 

1.36 
1.00 

0.64 
1.00 

OpenFlights 
US airports 

18 
66 

153 
2,123 

1.0 
2.0 

1.00 
1.01 

1.00 
0.99 
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Table 4.7: Summary of path length (P ) and diameter (D) characteristics: δ(u, GC ) -
shortest path from node u to the core subgraph GC 

Network P D Avg(δ(u, GC )) 

train bombing 2.63 6 1.35 
arenas-jazz 2.21 6 1.27 
infectious 3.57 9 2.55 

dnc-corecipient 2.27 8 1.63 
Euro-road 19.18 62 11.60 
US airports 3.14 8 1.48 
OpenFlights 4.18 14 2.04 
Route views 3.67 9 1.64 
arenas-pgp 7.65 24 4.27 
Oregon-1 3.62 10 1.54 
ca-HepPh 4.67 13 2.38 
ca-AstroPh 4.17 14 2.24 
ca-CondMat 5.35 14 3.25 
CAIDA 3.91 17 1.61 
Internet 3.78 10 1.84 

email-Enron 4.03 13 1.74 
loc-brightkite 4.92 18 3.41 
Facebook 4.31 15 2.42 
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Table 4.8: Ratio of the distance between nodes u and v to their respective distance to 
the core subgraph GC : R(u, v) 

Network k Avg(R(u, v)) 

train bombing 64 1.23 
arenas-jazz 70 0.96 
infectious 410 0.75 

dnc-corecipient 700 0.90 
Euro-road 1,039 0.85 
US airports 1,574 1.13 
OpenFlights 2,939 1.04 
Route views 6,474 1.17 
arenas-pgp 8,000 0.89 
Oregon-1 8,000 1.21 
ca-HepPh 8,000 1.03 
ca-AstroPh 8,000 0.96 
ca-CondMat 20,000 0.84 
CAIDA 26,475 1.24 
Internet 34,761 1.05 

email-Enron 20,000 1.21 
loc-brightkite 20,000 0.73 
Facebook 20,000 0.92 

the core subgraph, as expressed in eq.(4.4), where d(u, v) represents the shortest path 

between u and v, and d(u, GC ) or d(v, GC ) represents the shortest path between u or v 

to the core subgraph GC . 

Table 4.8 shows the average R(u, v) for k = 70, k = 700, k = 8, 000 and k = 20, 000 

respectively. We observe that the avg(R(u, v)) is very close to the optimal value of 1.0, 

which implies that our core subgraph GC contains the nodes with the highest betweeness 

in the network and they act as “bridges” for the connectivity between the other nodes 

in the network. 

d(u, v)
R(u, v) = (4.4)

d(u, GC ) + d(v, GC ) 

Core Removal: we also investigate the impact of removing the core subgraph GC in 

the structure of the studied networks. We observe that all the neworks described in 

§ ?? have a giant connected component (GCC) contaning more than 90% of all the 

nodes and more than 85% of all edges in the network. After the core removal, we see 
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that, for some networks (i.e., arenas-jazz, dnc-corecipient, Oregon-1 and email-Enron), 

at least 20% of the nodes break away from GCC, forming many isolated components 

of smaller sizes. Table 4.9 shows the number of these new connected components per 

network as well as the ratio of the size of the GCC after and before call removal in 

terms of the number of nodes and edges. From these results, we deduce that removing 

GC significantly affects the connectivity and density for some of the networks. 

Figure 4.9 shows the path length distribuition after we remove the core from our 

networks. We observe that the average path length increases after the core removal 

for most of the networks. For example, ca-AstroPh, email-Enron and Oregon-1 have 

average path length of 4.17, 4.03 and 3.62 before core removal, and 4.25, 4.49 and 5.72 

after core removal. This result provides further evidence that the core subgraph GC 

is an important structure for reachability, communication and information diffusion in 

these networks. Next, we discuss the implications of our results. 

Community Structure vs Network Core: Lastly, we now investigate the impor-

tance of the core subgraph (GC ) for the formation of communities structure in a dy-

namic system. To achieve this, we use Newman’s modularity-based algorithm [110, 27] 

to identify the communities structure in our network – recall that a “community” is 

often considered to be a subset of vertices that are densely connected internally but 

sparsely connected to the rest of the network. Figure 4.14(a) shows the structure of our 

“Route views” network. It is the Internet graph at the level of autonomous systems. Its 

general structure typically consists of client autonomous system and a small number of 

well-connected backbone nodes. This figure shows that the bulk of the nodes are placed 

in the periphery (yellow nodes), while a small fraction of central hubs are placed in the 

core (red nodes). In contrast, Fig. 4.14(b) shows the obtained Newman’s communities. 

There are 3 large communities (i.e., blue, purple and dark grey nodes). However, most 

of the communities are heavily blended with each other and the core nodes are spread 

across the communities. Thus, our results shows that traditional community detection 

algorithms may not discover the core structure of the network but instead they might 

break the core structure of the network. Figure 4.14(c) shows the community structure 

of the network after removing the core nodes. We observe that the community structure 

of the network is destroyed in the absence of the core nodes. Hence, this results provides 
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(a) Oregon-1 

(b) ca-AstroPh 

(c) arenas-jazz 

Figure 4.8: Path length distribuitions for Oregon-1, ca-AstroPh and arenas-jazz: P-1: 
distance between nodes in the original network; P-2: distance between nodes in the 
original network, after core removal; P-3: nodes distance to the core subgraph GC 
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(a) Route views 

(b) OpenFlights 

(c) US airports 

Figure 4.9: Path length distribuitions Route views, OpenFlights and US airports: P-1: 
distance between nodes in the original network; P-2: distance between nodes in the 
original network, after core removal; P-3: nodes distance to the core subgraph GC 
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Table 4.9: Basic stats of the giant (largest) connected components (GCC) after core 
removal: cn - number of connected components; nj and ni- number of nodes in GCC 
before and after core removal; ej and ei - number of edges in GCC before and after core 
removal; Pr - path length after core removal 

Network # cn ni/nj ei/ej Pr 

train bombing 12 0.31 0.16 2.66 
arenas-jazz 2 0.833 0.612 2.39 
infectious 2 0.93 0.83 3.71 

dnc-corecipient 104 0.757 0.404 2.97 
Euro-road 3 0.98 0.96 19.93 
US airports 246 0.79 0.33 3.86 
OpenFlights 78 0.96 0.73 4.45 
Route views 1,530 0.75 0.57 5.60 
arenas-pgp 26 0.993 0.940 7.61 
Oregon-1 3,183 0.688 0.503 5.72 
ca-HepPh 73 0.967 0.645 4.87 
ca-AstroPh 12 0.946 0.929 4.25 
ca-CondMat 2 0.997 0.978 5.37 
CAIDA 5,724 0.77 0.55 6.44 
Internet 1.473 0.95 0.62 4.13 

email-Enron 3,350 0.800 0.711 4.49 
loc-brightkite 65 0.972 0.957 4.92 
Facebook 66 0.994 0.930 4.36 

further evidence that our core subgraph GC is a fundamental structure for the forma-

tion of the network. Additionally, Fig. 4.11(a) shows the structure of our “OpenFlights” 

network. Our methodology uncovers the core-periphery structure of the network: green 

(periphery) and red (core) nodes. Figure 4.11(b) shows he obtained Newman’s com-

munities. There are 3 large communities (i.e., blue, purple and green nodes) and the 

core nodes are spread across the communities. Lastly, Fig. 4.11(c) shows the community 

structure of the network after removing the core nodes. We observe that the modularity 

value of the network increases after core removal. Hence, from this result, we can infer 

that for some networks the core subgraph masks or hides the true community structure 

of a network – we obtained similar results for the others networks (see Table 4.10). 
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Table 4.10: Modularity values of the giant (largest) connected components (GCC) before 
(Mj ) and after (Mi) core removal 

Network Mj Mi 

train bombing 0.417 0.594 
arenas-jazz 0.294 0.392 
infectious 0.699 0.613 

dnc-corecipient 0.411 0.256 
Euro-road 0.860 0.864 
US airports 0.222 0.517 
OpenFlights 0.596 0.880 
Route views 0.570 0.743 
arenas-pgp 0.869 0.882 
Oregon-1 0.559 0.778 
ca-HepPh 0.600 0.727 
ca-AstroPh 0.569 0.584 
ca-CondMat 0.710 0.700 
CAIDA 0.599 0.887 
Internet 0.549 0.722 

email-Enron 0.52 0.668 
loc-brightkite — — 
Facebook — — 
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(a) Core-periphery structure 

(b) Newman communities 

(c) Newman communities after core removal 

Figure 4.10: Visualization of the network structure for the “Route views” network: a) 
core-periphery structure: red (core) and yellow (periphery) nodes; b) Newman commu-
nity structure before core removal; c) Newman community structure after core removal 
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(a) Core-periphery structure 

(b) Newman communities 

(c) Newman communities after core removal 

Figure 4.11: Visualization of the network structure for the “OpenFlights” network: a) 
core-periphery structure: red (core) and green (periphery) nodes; b) Newman commu-
nity structure before core removal; c) Newman community structure after core removal 
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Figure 4.12: The k-shell decomposition method on the reciprocal network of Google+ 
(subgraph H1). For each k-shell, we plot the number of nodes belonging to the k-shell 
as k varies from 1 to kmax = 308. 

4.6 Scalability Analysis 

In this subsection, using Google+ (G+) as a case study, we show that our algorithm 

can be applied to massive graphs with 10s or 100s of millions of nodes and more than 

1 billion edges. Using our Γi graphs6 (see Section 4.2), we first apply our procedure to 

extract the core subgraph of G+. We then analyze how the core structure evolves over 

time using three different snapshots (Γi=1,2,3). 

In extracting the core subgraph of G+, we focus our analysis on its reciprocal network 

– namely, the bidirectional subgraph formed by the reciprocal edges among users in G+. 

Based on a massive Google+ dataset (see Sect. 4.2 for a brief overview of Google+ and 

a description of the dataset), we find that out of more than 74 million nodes and ≈ 

1.4 billion edges in (a snapshot of) the directed Google+ OSN, more than two-third of 

the nodes are part of Google+’s reciprocal network and more than a third of the edges 

are reciprocal edges (with a reciprocity value of roughly 0.31). This reciprocal network 

contains a giant connected subgraph with more than 40 million nodes and close to 200 

million edges (see Sect. 3.4.1 for more details). The main characteristics of the reciprocal 

network of Google+ (subgraphs Hi=1,2,3) are summarized in Table 4.11, where density is 

6For clarity of notation, we sometimes drop the subscript index i, unless we are referring to a specific 
snapshot i > 1 
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Table 4.11: Main characteristics of the reciprocal network of Google+: H 

ID # nodes # edges max(degree) density 

H1 40,403,216 197,838,519 4,294 2.42 × 10−7 
H2 49,161,409 226,373,003 4,425 1.87 × 10−7 
H3 74,539,728 327,204,637 4,743 1.78 × 10−7 

defined as |E|/[|V |(|V |− 1) for a directed graph, and 2|E|/[|V |(|V |− 1) for an undirected 

graph here |V | is the number of nodes and |E| is the number of edge. 
In a sense, a reciprocal network can be viewed as the stable “skeleton” network of 

the directed OSN that holds it together. Hence, we are interested in analyzing and 

uncovering the core structural properties of the reciprocal network of a directed OSN, 

as they could reveal the possible organizing principles shaping the observed network 

topology of an OSN [17]. For example, using the core, we can build network models 

that can help us to understand the topological features of the nodes and structural 

properties of the network, as well as, to predict the topological growth of the network 

and provide upper bounds of the distance between the nodes – see the jellyfish model 

of the Internet in [33]. Furthermore, unveiling the core structure (referred to as the 

“nucleus”) of a reciprocal network may have implications in the design of algorithms 

for information flow, and in development of techniques for analyzing the vulnerability 

or robustness of OSNs. 

We apply the classical k-shell decomposition method to the Google+ reciprocal 

network for subgraph H1 (we analyze the other subgraphs in Sect. 5.4). We find that 

the kmax = 308, and the kmax-core is a clique of size 290 nodes (the maximum clique in 

the Google+ reciprocal network). Figure 4.12 shows the number of nodes belonging to 

the k-shell as k varies from 1 to 308: we see that 99% of the nodes in our network fall in 

the lower k-shells (from k = 1 to 100). This is not surprising, as the majority of the nodes 

in our network have degree less than 100. Figure 4.13(a) shows the average degree of 

nodes in the k-shell, whereas in Fig. 4.13(b) we zoom in on nodes with deg(v) ≥ 1000, 

and illustrate how they distribute across various k-shells. We see that while a large 

portion of high-degree nodes belong to higher k-shells, in fact the highest degree nodes 

belong to lower k-shells, suggesting that they do not lie at the “core” of the Google+ 

reciprocal network. However, as we discussed in Sect. 4.3 directly applying this method 
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to the Google+ reciprocal yields a final graph – a clique of 290 nodes (the maximum 

clique of the Google+ reciprocal network) that consists of a close-knit community of 

users in Taiwan – which is unlikely to lie at the “core” of the Google+ reciprocal network 

(see discussion on the next chapter, where we show this clique in fact lies more at the 

outer ring of Google+’s dense core structure). 

To extract a meaningful core for our Google+ dataset, we re-formulated our nucleon-

index (NI) for massive graphs as follows: 

XVk
NI(Gk, θ(i)) := × ρ(Dk) × { θ(i)}

VG 
i∈Gk 

(4.5) 

Ek
Dk := 

Vk × (Vk − 1) 
(4.6) 

ρ(Dk) := 1 − e S×Dk (4.7) 

where by abuse of notation, we use Ek to denote the number of edges between nodes 

in Gk and Vk the number of nodes in Gk (and |VK | = 0). The first term is penalty 

parameter and it takes into account the proportion of nodes excluded from G - it favors 

large cores. The second term in eq.(4.2) measure the density of Gk and the last term is 

the sum of the centrality values of the nodes in Gk (see also appendix B). Ideally, if Gk 

is a “dense core” of G, the product of these two terms should be large. Hence, Gk with 

the largest NI represents the nucleus of G (as produced by the decomposition process). 

Applying eq.(4.2) to our dataset and the statistics of our core subgraphs are illustrated 

in Table 4.12. In the next chapter, we dissect the structure of these subgraph in order 

to understand how these networks are formed. Figure ?? shows the variation of the 

nucleon-index per k-core index for our subgraphs Hi=1,2,3. 



64 

(a) Average degree of nodes in the k-shells 

(b) K-shell distribuition of the nodes with deg(v) ≥ 1000 

Figure 4.13: The k-shell decomposition method on the reciprocal network of Google+ 
(subgraph H1). We plot the degree distributions for nodes in the k-shells, as k varies 
from 1 to kmax = 308: a) average degree of nodes in the k-shells, b) we zoom in on 
nodes with deg(v) ≥ 1000, and illustrate how they distribute across various k-shells. 

Table 4.12: Main characteristics of the core subgraph (GC ) for the reciprocal network 
of Google+ across several snapshots. 

Hi kC # nodes # edges avg(d) density 

1 
2 
3 

120 
120 
130 

48,229 
52,904 
94,112 

6,378,596 
6,737,630 
14,260,691 

132 
127 
152 

0.00548 
0.00482 
0.00322 
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(a) H1: maximum NI at kC = 120 

(b) H2: maximum NI at kC = 123 

(c) H3: maximum NI at kC = 134 

Figure 4.14: Variation of the nucleon-index(NI) per k-core index: the k-index to stop 

the shells pruning process (kC ) corresponds to the max(NI) 
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4.7 Discussion 

Using examples from communication networks as well as collaboration, location-based, 

interaction, and online social networks, we have demonstrated that our method can 

effectively uncover and extract the nucleus of these networks. In this section, we discuss 

the limitations and implications of our method and results. 

First, our proposed methodology to uncover the nucleus of networks can also be 

applied to weighted and directed networks by using a variation of the k-shell decompo-

sition method: Garas et al. [71] presented a weighted k-shell decomposition method and 

Batagelj et al. [111] generalized the k-shell decomposition to directed networks. Our 

method can be applied with these generalized algorithms because our dependence and 

nucleon-index metrics are independent to the k-shell decomposition method. Once the 

k-shells are provided by decomposing the network into k-layers, the dependence and 

nucleon-index values can be computed. 

Second, the “coreness” centrality or k-shell index has been argued to be a better 

measure than node degree for identifying influential spreaders in a network [74, 75]. 

However, our results show that using k-shell indices as a predictor of spreading influence 

of a node can be misleading. This is due to the fact that for a node to have a high 

k-shell index, it just needs to be a part of a very strong structure (e.g., a clique). This 

structure, however, may be isolated and lie at the edge or periphery of the network, 

instead of its core (see § 4.3). Our analysis shows that the dependency value of a node, 

depk(i), provides important information about the structure function of each node in 

the graph. Thus, we believe that by using a node dependency value along with its 

k-shell index (depk, k), we can better predict the spreading influence of a node than 

simply using its k-shell index. We will investigate this in the future. 

Third, unveiling the core structure of social networks may have implications in the 

design of algorithms for information flow, and in development of techniques for analysing 

the vulnerability or robustness of networks. In addition, analysis of the core structure 

of social networks can help us uncover and understand possible organizing principles 

shaping the observed network topological structure and network formation. 
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4.8 Summary 

In this paper, we have advanced and developed an effective procedure to extract the core 

structure of social networks. First, we introduce a new metric – the node “dependence 

value” – that measures the location importance of a node in a network. Second, we define 

a new measure called nucleon-index that captures the extend to which a subgraph is 

a densely intra-connected and topological central core. Then, using these metrics, we 

proposed a modified version of the k-shell decomposition method by identifying the kC -

index where we should stop pruning the network in order to preserve its core structure. 

For our social network datasets, we found that they contain very dense core subgraphs 

GC . The smallest core has 32 nodes and 362 edges (Oregon-1), whereas the largest 

one has 239 nodes and 28,441 edges (ca-HepPh). Finally, given a dense core subgraph 

GC , we investigate the importance of this substructure for the network by analysing the 

following metrics: i) the distance between a node v to the core subgraph GC ; ii) the 

ratio of the distance between nodes u and v to their respective distance to GC and iii) 

lastly, the impact of removing GC in the structure of the network G (GC ⊂ G). 

As part of ongoing and future work, we will provide a more in-depth analysis of 

the dense core subgraph GC of social networks. We also plan to apply our method to 

a massive Google+ dataset [14, 11, 100] (with more than 170 million nodes and ≈ 3 

billion edges), a massive Twitter dataset [112] (with more than 500 million nodes and 

≈ 23 billion edges) and other social networks. 



Chapter 5 

Dissecting the Nucleus of 

Complex Networks using 

(Hyper)Graphs 

5.1 Introduction 

Many complex networks are observed to have a core-periphery structure [22, 23, 24]. In 

Chapter 4, we present our scheme to extract this meso structure in complex networks. 

For a massive Google+ reciprocal network with more than 40 million nodes and close 

to 200 million edges (see Chapter 4 for more details) with uncovered very dense core 

subgraphs (GC ) – from 48,229 nodes and 6,378,596 edges to 94,112 nodes and 14,260,691 

edges. Existence of this dense core sub(graph) in the reciprocal network of Google+ 

raises many interesting and challenging questions. How is this network core formed? 

What does this structure look like?1 . 

In an attempt to address these questions (or challenges), we develop an effective 

two-step procedure to hierarchically extract and unfold the core structure of Google+’s 

1To answer these questions, for networks of tens or hundreds of vertices, it is a relatively straight-
forward matter of drawing and examining a picture of the network either by hand or with computer 
rendering tools [113]. However, for networks of million or a billion vertices, however, this approach is 
useless. 
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reciprocal network2 , building up and generalizing ideas from the clique percolation ap-

proach [?] as follows: i) Given this dense “core” subgraph of the Google+ reciprocal 

network, we first compute the maximal clique that each node is part of (using a sim-

plified Bron-Kerbosh algorithm), and then form a new directed (hyper)graph – a form 

of clique percolation [?], where the vertices are (unique) cliques of various sizes, and 

there exists a directed edge from clique Ci to clique Cj if half of the nodes in Ci are 

contained in Cj (see Sect. ??). This new (hyper)graph provides a higher-level repre-

sentation of the dense core graph of the Google+ reciprocal network: the intuition is 

that the maximal clique containing each node v represents the most stable structure 

that node v is part of, and the directed edge in a sense reflects the “attraction” (or 

“gravitational pull”) that one clique (constellation) has over the other. We find that 

this (hyper)graph of cliques comprises of 1700+ connected components (CCs). ii) Con-

sidering these CCs as the core “community” structures (a dense cluster of cliques) of 

the Google+ reciprocal network, we define three metrics to study the relations among 

these CCs in the underlying Google+ reciprocal network: the number of nodes shared 

by two CCs, the number of nodes that are neighbors in the two CCs, and the number 

of edges connecting these neighboring nodes (see Sect. ??). These metrics produce a 

set of new (hyper)graphs that succinctly summarize the (high-level) structural relations 

among the core “community” structures and provide a “big picture” view of the core 

structure of the Google+ reciprocal network and how it is formed. In particular, we 

find that there are ten CCs that lie at the center of this core structure through which 

the other CCs are most richly connected. Additionally, our results shows that directly 

applying standard k-shell decowomposition method to the Google+ reciprocal yields 

a final graph – a clique of 290 nodes (the maximum clique of the Google+ reciprocal 

network) that consists of a close-knit community of users in Taiwan – which is unlikely 

to lie at the “core” of the Google+ reciprocal network (see discussion in Sect. ??, where 

we show this clique in fact lies more at the outer ring of Google+’s dense core struc-

ture). We also find that the core structure of the Google+ reciprocal network is very 

stable as the network evolves (see Sect. 5.4). We discuss implications and related work 

in Sect. 3.5 and Sect ??. In Sect. ??, we conclude the paper with a brief discussion of 

the future work. 
2Our methodology can also be applied to others massive online social networks. 
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We summarize the major contributions of our paper as follows. To the best our 

knowledge, our paper is the first study on the core structure of a “reciprocal network” 

extracted from a massive directed social graph. While this paper focuses on Google+, 

our approach is also applicable to other directed OSNs. 

• We develop an effective two-step procedure to hierarchically extract and unfold 

the core structure of a reciprocal network arising from a directed OSN. 

• We apply our method to the reciprocal network of the massive Google+ social 

network, and unfold its core structure. In particular, we find that there are ten 

subgraphs (“communities”) comprising of dense clusters of cliques that lie at the 

center of the core structure of the Google+ reciprocal network, through which 

other communities of cliques are richly connected; together they form the core to 

which other nodes and edges that are part of sparse subgraphs on the peripherals 

of the network are attached. 

• We observe that the core structure of the Google+ reciprocal network is very stable 

as the network evolves: the size of the core communities (hyper)graph increases 

as the network evolves, as well as, its density. Additionally, the set of nodes that 

participates in the core is very stable over time, with few percentage of nodes 

(e.g: 5% and 9%) that move away from the core to the periphery as the network 

evolves. 

• We observe that the number of communities lying at the center of the core struc-
ture of the Google+ reciprocal network is also very stable: it increases from 10 to 

11 core communities across snapshots H1 → H2 and from 11 to 13 core commu-

nities across snapshots H2 → H3 in the core communities (hyper)graphs. 

5.2 Constructing the Core Clique (Hyper)Graph 

Given the dense “core” subgraph G120 (extracted in the previous chapter), we use 

“maximal cliques” as the basic atomic structures of the network nucleus3 . Using these 

3In this paper we use the terms “core” and “nucleus” interchangeable 
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substructures, we build (hyber)graphs that provide us with a higher-level representation 

of the dense core graph of the networks. To achieve this, we proceed as following: 

First, to find the largest maximal clique containing a given vertex in a network, we 

implement algorithm 1. It uses a variation of the popular Bron-Kerbosh algorithm [?] 

(we denote it as Simplified Bron-Kerbosh (SBK)) to extract maximal cliques. During 

the search for the largest maximal clique containing a given vertex v (thereafter referred 

to as Cv in short), our heuristic removes the vertices that cannot form cliques larger 

than the clique stored in the variable Cmax. Furthermore, our algorithm considers only 

the set of neighbors of v that share at least one edge to another vertex adjacent to 

v at each step, instead of recursively considering all neighbors of v, and thus is much 

faster. This set (denoted by N i(v)) is sorted in decreasing order based on the number 

of shared neighbors between v and u ∈ N i(v) for the following reason: in a relatively 

fairly connected subgraph, a vertex with the largest number of shared nodes with v is 

more likely to be a member of Cv compared to any other. Then, in the worst case, 

algorithm 1 loops over the complete set N i(v) at most 4 (max degree in the graph), 

calling the subroutine SBK at most 4 . Thus, the time complexity of our heuristic is 

bounded by O(42). Using algorithm 1, we develop a procedure to extract the minimal 

set of the largest maximal cliques that cover every node in a given graph (algorithm 2). 

The resulting set of cliques returned from this method is always guaranteed to contain 

at least a unique node per clique. We apply this procedure to subgraph G120 and obtain 

34,501 maximal cliques with an average clique size of 23.03 nodes. Figure 5.1 shows the 

clique size distribution. 

Second, using the extracted 34,501 maximal cliques, we generate a new directed 

(hyper)graph, where the vertices are (unique) cliques of various sizes, and there exists a 

directed edge from clique Ci to clique Cj if more than half of the nodes in Ci are contained 

in Cj , i.e., Ci → Cj if (|Ci| ∩ |Cj |)/|Ci| ≥ θ = 0.5. We vary the parameter θ from 0.5 

to 0.7, and find that it does not fundamentally alter the connectivity structure of the 

(hyper)graph of cliques thus generated. We remark that the maximal clique containing 

each node v can be viewed as the most stable structure that node v is part of. The 

directed (hyper)graph of cliques captures the relations among these stable structures 

each node is part of: intuitively, each directed edge in a sense reflects the attraction (or 

gravitational pull) that one clique (a constellation of nodes) has over the other. Hence, 
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Algorithm 1 Largest Maximal Clique Extraction algorithm (LC) 
1: Input: node u 
2: Output: largest maximal clique containing u 
3: R : currently growing maximal clique 
4: P := N [u]: set of neighbors of vertex u 
5: procedure LC(u) V 
6: N i(u) = {wi, wi, ...|wk=i,j.. ∈ N(u) du(wi) > du(wj )}
7: Cmax = 0 
8: max = 0 
9: for w ∈ N i(u) do 

10: R = [u] 
11: P = N [w] 
12: C = SBK(R, P, max) 
13: k = size(C) 
14: if k > max then 
15: Cmax = C 
16: max = k 
17: return Cmax 

Subroutine: Simplified Bron-Kerbosh (SBK) 

18: procedure SBK(R, P, max) 
19: if size(R) + size(P ) ≤ max then 
20: return . it is not possible to find a clique larger than max 
21: else if P := 0 then 
22: report R as a maximal clique 
23: else 
24: Let unew be the vertex with highest number of neighbors in P 
25: Rnew := R ∪ {unew}
26: Pnew := P ∩ N [unew] 
27: SBK(Rnew, Pnew, max) 



73 

Figure 5.1: Log-log plot of clique size complementary cumulative distribution function 
(CCDF) for the core subgraph G120 (extracted from H1) – we extract these cliques using 
algorithms 1 and 2. 

Algorithm 2 Extract Minimal Set of Maximal Cliques from a Graph 
1: procedure EMC(G(V, E)) 
2: construct a set W and W := V 
3: construct a ordered list S of the nodes in V based on their degree (decreasing 
order) 

4: select the first item in S, vertex i, as the pivot 
5: apply the LC algorithm using i as the pivot vertex 
6: add the reported maximal clique ci containing i to the clique set Ctotal = 
[cn, cm, ..] 

7: remove the nodes in ci from W : Wj = Wi − ci 
8: select the next item in S, vertex j, as the next pivot vertex such that j 6∈ Ctotal 

and repeat steps(5), (6) and (7) until W = ∅ 
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this (hyper)graph of cliques provides us with a higher-level representation of the dense 

core graph of the Google+ reciprocal network – how the most stable structures are 

related to each other. This procedure can be viewed as a form of clique percolation [?]. 

We find that this (hyper)graph of cliques comprises of 1,758 connected components 

(CCs). The largest component has 2,618 cliques, 3,295 nodes and 437,867 edges, while 

the smallest has 1 clique, 3 nodes and 3 edges respectively. We regard these connected 

components (CCs) as forming the core communities of the core graph of the Google+ 

reciprocal graph: each CC is composed of either one single clique (such a CC shares 

few than half of its members with other cliques or CCs), or two or more cliques (stable 

structures) (where one clique shares at least half of its member with another clique in the 

same CC, thus forming a closely knit community). Figure 5.2(a) shows the distributions 

of these components in terms of the number of cliques, the number of nodes and the 

number of edges. We observe that for CC id’s from 1 to 100 (which contains 30 or more 

cliques), there is a strong correlation between the number of cliques, nodes and edges: 

in general the connected components with the highest number of cliques also have the 

highest number of nodes and edges. 

Figure 5.2(b) shows the maximum, minimum, average and 75% percentile of clique 

size for each CC. We observe that there is not a relationship between the number of 

cliques and their respective sizes in the CCs. We observe that most cliques have sizes 

between 10 and 100 nodes. There are largest CCs composed with a huge number of 

cliques of small size (e.g., CC ids from 1 to 10), whereas there are also small CCs 

composed with few number of cliques but with very large sizes (e.g. CC ids: 31, 44, 

and 47). We note also that there are a number of CCs which contain only one clique, 

but some of these cliques are of large size also. 

5.3 Analysis of the Core Community (Hyper)Graph & its 

Structure 

We now investigate the relationship between the connected components (CCs) in our 

clique (hyper)graphs constructed in the previous section (Sect. ??), in particular the 

70th largest CCs. Recall that we regard the CCs in the clique (hyper)graphs as forming 

the core communities within Google+ reciprocal network nucleus – each CC represents 
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(a) Number of cliques, nodes and edges 

(b) Clique size: maximum, minimum, average and 75% percentile 

Figure 5.2: Statistics of the connected components in the (hyper)graph of cliques con-
structed from the core subgraph G120 (extracted from H1): a) distribution of the num-
ber of cliques, nodes and edges and b) distribution of the clique size in terms of the 
maximum, minimum, average and 75% percentile of the clique size. 
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a dense cluster of cliques. In this section, we define three metrics to study the relations 

among these CCs in the underlying Google+ reciprocal network: 

• Shared Nodes: the number of nodes that CCi and CCj have in common: 

S(CCi, CCj ) = |{u ∈ V |u ∈ CCi, u ∈ CCj }| (5.1) 

• Shared Neighbors: the number of nodes in CCi that have an edge to another 

node in CCj : 

N(CCi, CCj ) = |{u ∈ CCi, |∃v ∈ CCj : (u, v) ∈ E}| (5.2) 

• Cross-Edges: the number of cross edges between two connected components 

(CCi and CCj ): 

B(CCi, CCj ) = |{(u, v) ∈ E|v ∈ CCi, u ∈ CCj }| (5.3) 

These metrics produce a set of three new (hyper)graphs that succinctly summarize 

the (high-level) structural relations among the core community structures: 1st) a node 

represents a CC and an undirected edge CCi −CCj denotes that both components share 

at least one node; 2nd) a node represents a CC and a directed edge CCi → CCj denotes 

that CCi has the largest number of cross edges to nodes in CCj ; 3rd) a node represents 

a CC and a directed edge CCi → CCj implies that CCi has the largest number of 

neighboring nodes to nodes in CCj . These (hyper)graphs provide a “big picture” view 

of the core graph of the Google+ reciprocal network and yield insights as to how it is 

formed. 

Figures 5.3(a), 5.3(b), 5.3(c) show the (hyper)graphs of the relationship between the 

components based on the number of shared nodes, cross-edges and shared neighbors. 

These figures show that there are ten subgraphs (core communities”) comprising of 

dense clusters of cliques that lie at the center of the nucleus of the Google+ reciprocal 

network, through which other communities of cliques are richly connected. Then, the 

1,758 connected components (CCs) in the clique (hyper)graph form the core graph of 

the Google+ reciprocal network, to which other nodes and edges that are part of sparse 

subgraphs on the peripherals of the network are attached. Table 5.1 shows a summary 

of the statistics for the ten CCs, respectively. We observe that the largest CC has 2,618 
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Table 5.1: Summary of the statistics for the ten components that lie at the center in 
the core graph of the reciprocal network of Google+. Together they form the core to 
which peripheral sparse subgraphs are attached. 

ID # c # nodes # edges avg |c| max |c| min |c| 75% percentile 

1 2,618 3,295 437,867 30.0 47 4 25 
2 2,745 3,256 494,867 20.2 46 5 26 
3 2,437 3,059 499,356 25.5 47 5 30 
4 2,324 2,877 416,098 20.2 42 7 25 
5 2,340 2,737 449,225 24.3 56 6 32 
7 1,040 1,362 146,151 29.2 55 5 40 
15 513 923 60,191 16.0 33 6 20 
22 473 808 32,031 10.0 23 4 11 
37 262 396 14,324 9.2 15 4 10 
47 69 297 22,629 50.3 139 5 73 

cliques, 3,295 nodes and 437,867 edges, while the smallest has 69 cliques, 297 nodes and 

22,629 edges. The set of components in table 5.1 contains some of the largest CC in our 

clique (hyper)graph. 

From figures 5.3(a), 5.3(b) and 5.3(c), we observe that in the periphery of our core 

communities (hyper)graphs, we find a small CC composed with 36 of the largest cliques 

in the Google+ reciprocal network. The average, minimum and maximum sizes of the 

cliques in this CC are 227, 105 and 290 – the latter is the maximum clique of the Google+ 

reciprocal network. This CC is highlighted by a “red circle” in the (hyper)graphs in 

Fig. 5.3. It shows this CC lies more at the outer ring of Google+’s dense core structure. 

As mentioned earlier in Sect. 4.3, the 290 users in this maximum clique of the Google+ 

reciprocal network belong to a single institution in Taiwan where every user follows every 

other. The users in this clique also form close relations with many other users, forming 

35 other cliques. Together, these 35 cliques form a close-knit community. However, we 

see that this community in fact does not lie at the very “center” – instead lies more at 

the outer ring – of the core graph of the Google+ reciprocal network. Hence, we see 

that simply applying the conventional k-shell decomposition method to the Google+ 

reciprocal network would yield the maximum clique in the Google+ reciprocal network, 

but not its core structure. In contrast, the ten CCs mentioned above more likely lie at 

the “center” of the core graph of the Google+ reciprocal network. 
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(a) Shared nodes: a node represents a CC and an undirected edge 
CCi − CCj denotes that both components share at least one node. 

(b) Cross-edges: a node represents a CC and a directed edge CCi → 
CCj implies that CCi has the largest number of cross edges to nodes 
in CCj . 

(c) Neighboring nodes: a node represents a CC and a directed edge 
CCi → CCj implies that CCi has the largest number of neighboring 
nodes with CCj . 

Figure 5.3: (Hyper)Graphs for the core communities (extracted from G120) of the re-
ciprocal network of Google+: snapshot - H1. The color intensity of a CC is proportional 
to its degree. The CC highlighted in “red” is the core subgraph yielded by directly ap-
plying the standard k-shell decomposition to Google+’s reciprocal network. However, 
our core communities (hyper)graphs show that this structure in fact does not lie at the 
very “center” – instead lies more at the outer ring – of the core graph of the Google+ 
reciprocal network. 
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5.4 Evolution of the Core Community (Hyper)Graph 

We now analyze how the core structure of the Google+ reciprocal network evolves over 

time using the remaining snapshots of subgraph H (Hi=2,3). To achieve this, we apply 

our methodology to uncover the core communities (hyper)graph for Hi. Table ?? shows 

the kC -indices where we stop the k-shell decomposition method and provides statistics 

for the core subgraph (GC ) of the reciprocal network of Google+ across three different 

snapshots. We observe that the size of the nucleus increases as the network evolves, as 

well as, its density – although, we see a slight decrease at H2 (this correlates with the 

release of a new Google+ feature reported by the authors in [?]). Table 5.2 provides 

statistics for the core communities (hyper)graphs. We observe that the number of cliques 

in the core subgraph (GC ) increases as the network evolves. Similarly, the number of 

core communities (CC) and the size of the largest CC in the clique (hyper)graph increase 

as the network evolves. In contrast, the size of the smallest CC remains the same across 

all the snapshots. 

Analyzing the nodes that are found in the nucleus, we find that the set that par-

ticipates is very stable over time. We find changes consisting of a few percentage of 

nodes that moved from the nucleus to a lower k-shell as the network evolves: 9% from 

H1 → H2 and 5% from H2 → H3. We also observe that the main structure of the core 

communities (hyper)graph is stable across all the snapshots: it consists of dense clusters 

of cliques that lie at the center of the core graph, through which other communities of 

cliques are richly connected. Additionally, we observe that the number of the most cen-

tral communities in the core communities (hyper)graphs is also very stable: it increases 

from 10 to 11 across snapshots H1 → H2 and from 11 to 13 across snapshots H2 → H3. 

Lastly, we see that the community containing the “maximum clique” remains in the 

periphery of the core subgraph as the network evolves – see Fig. 5.4 and Fig. 5.5 for 

illustrations. 

5.5 Summary 

In this paper, we have developed an effective three-step procedure to hierarchically ex-

tract and unfold the core structure of the reciprocal network of Google+. We first 

applied a modified version of the k-shell decomposition method to prune nodes and 
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(a) Shared nodes: a node represents a CC and an undirected edge 
CCi − CCj denotes that both components share at least one node. 

(b) Cross-edges: a node represents a CC and a directed edge CCi → 
CCj implies that CCi has the largest number of cross edges to nodes 
in CCj . 

(c) Neighboring nodes: a node represents a CC and a directed edge 
CCi → CCj implies that CCi has the largest number of neighboring 
nodes with CCj . 

Figure 5.4: (Hyper)Graphs for the core communities (extracted from G120) of the recip-
rocal network of Google+: snapshot - H2. The color intensity of a CC is proportional 
to its degree. The CC highlighted in “red” is the core subgraph yielded by directly ap-
plying the standard k-shell decomposition to Google+’s reciprocal network. However, 
our core communities (hyper)graphs show that this structure in fact does not lie at the 
very “center” – instead lies more at the outer ring – of the core graph of the Google+ 
reciprocal network. 
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(a) Shared nodes: a node represents a CC and an undirected edge 
CCi − CCj denotes that both components share at least one node. 

(b) Cross-edges: a node represents a CC and a directed edge CCi → 
CCj implies that CCi has the largest number of cross edges to nodes 
in CCj . 

(c) Neighboring nodes: a node represents a CC and a directed edge 
CCi → CCj implies that CCi has the largest number of neighboring 
nodes with CCj . 

Figure 5.5: (Hyper)Graphs for the core communities (extracted from G120) of the recip-
rocal network of Google+: snapshot - H3. The color intensity of a CC is proportional 
to its degree. The CC highlighted in “red” is the core subgraph yielded by directly ap-
plying the standard k-shell decomposition to Google+’s reciprocal network. However, 
our core communities (hyper)graphs show that this structure in fact does not lie at the 
very “center” – instead lies more at the outer ring – of the core graph of the Google+ 
reciprocal network. 
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Table 5.2: Main statistics of the core communities (hyper)graphs for Hi: c - cliques; 
CC - connected components 

Hi # c avg|c| # CC max|CC| min|CC| 

1 34,501 23.03 1,758 2,618 1 
2 38,055 20.68 2,221 2,487 1 
3 65,101 24.96 3,802 6,217 1 

edges of sparse subgraphs that are likely to lie at the peripherals of the Google+ re-

ciprocal network. We then performed a form of clique percolation to generate a new 

directed (hyper)graphs where vertices are maximal cliques containing the nodes in the 

dense “core” graph generated in the previous step, and there exists a directed edge from 

clique Ci to clique Cj if half of the nodes in Ci are contained in Cj . We found that 

this (hyper)graph of cliques comprises of 1700+ connected components (CCs), which 

represent the core “communities” of the Google+ reciprocal network. Finally, we intro-

duced three metrics to study the relations among these CCs in the underlying Google+ 

reciprocal network: the number of nodes shared by two CCs, the number of nodes that 

are neighbors in the two CCs, and the number of edges connecting these neighboring 

nodes. These metrics produce a set of new (hyper)graphs that succinctly summarize the 

(high-level) structural relations among the core “community” structures and provide a 

“big picture” view of the core structure of the Google+ reciprocal network and how it 

is formed. In particular, we found that there are ten CCs that lie at the center of this 

core structure through which the other CCs are most richly connected. 

Our proposed three-step hierarchical procedure assumes that the core subgraph of a 

network has a large number of cliques. Hence, it may fail to yield a meaningful structure 

for graphs with just a small number of cliques. To address this limitation, we can relax 

the notion of clique by constructing substructures which are clique-like. For example, a 

k-relaxed clique [114] is a set of nodes that connect to every node in the set except for 

at most k nodes (a 1-relaxed clique is a clique) [33];k-clique is a maximal subgraph such 

that the distance between each pair of its vertices is not larger than k; k-club [115, 116] 

is a subgraph with diameter ≤ k. There are others definitions of relaxed cliques in 

the literature such as k-plex [115, 116], k-block [115, 116], γ-quasi-clique [115, 116] and 

((α, γ))-quasi-clique [115, 116]. As part of ongoing and future work, we will develop 
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a more rigorous characterization of the core graph of the Google+ reciprocal network 

based on the (modified) k-shell decomposition, and provide a more in-depth analysis 

of the (hyper)graph structures of the clique core graph and the (high-level) structural 

relations among the core “community” structures. We also plan to apply our method 

to a massive Twitter dataset (with more than 500 million nodes and ≈ 23 billion edges) 

and other OSNs. 



Chapter 6 

Conclusion 

In this dissertation, we propose new tool to understand the structural properties and 

formation of complex networks. Our developed schemes are capable of: i) helping to 

understand possible organizing principles shaping the observed network topology of a 

directed complex network; ii) extracting the core structure of massive complex networks; 

and iii) dissecting the structure of the dense nucleus of complex networks. 

6.1 Summary of Contributions 

Our main contribution in this dissertation are as follows: 

1. We present a comprehensive measurement-based characterization of the connec-

tivity among reciprocal edges in a directed complex network – using the online 

social network (OSN) Google+ as case study – and their evolution over time, with 

the goal to gain insights into the structural properties of a complex network. In 

a sense, the reciprocal network can be viewed as the stable skeleton network of 

a directed network that holds it together. Thus, they could reveal the possible 

organizing principles shaping the observed network topology of a directed complex 

network. Moreover, understanding the dynamic structural properties of the recip-

rocal network provides us with additional information to characterize or compare 

directed networks that go beyond the classic reciprocity metric, a single static 

value currently used in many studies. 
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2. We develop an effective procedure to extract the core structure of complex net-

works. To achieve this, we introduce a new metric the node “dependence value” 

that measures the location importance of a node in a network. Then, we define 

a new measure called “nucleon-index” that captures the extend to which a sub-

graph is a densely intra-connected and topological central core. Then, using these 

metrics, we proposed a modified version of the traditional k-shell decomposition 

method by identifying the kC -index where we should stop pruning the network in 

order to preserve its core structure and extract a meaningful “core” for complex 

networks. 

3. We propose a two-step procedure to hierarchically unfold the nucleus of complex 

networks by building up and generalizing ideas from the existing clique percolation 

approaches. Using maximal cliques as the basic atomic structures of the network 

nucleus, we build (hyper)graphs that provide us with a higher-level representation 

of the dense core graph of complex networks. Hence, our scheme provides a “big 

picture view of the core structure of a complex network and how it is formed. Our 

methodology is very scalable and can also be applied to massive complex networks 

(hundreds million nodes and billion edges). 
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Appendix A 

Beta Parameter Selection 

Beta Parameter Selection: we now proof that the number of n-step removed neigh-

bors of i is multiplied by βn−1 . We also present a discussion on how the selection of 

values for the β parameter in (4.1) impacts our criteria to stop the k-shell decomposition 

method presented in Sect. 4.4.1: 

Given that dep0(i) = 0 and dep1(i) = δ1(i), we can write an expression for dep2(i) as 

following: 

dep2(i) = dep1(i) + δ2(i) + β × Σj∈N2(i)dep
1(j) 

(A.1) 
= δ1(i) + δ2(i) + β × Σj∈N 2(i)δ

1(j) 

Let’s assume that node i has c(i) = 4, then dep4(i) is computed as following: 

dep4(i) = dep3(i) + δ4(i) + βΣj∈N4(i)[dep
3(j)] (A.2) 

Expanding (A.2) gives: 

dep4(i) = dep3(i) + δ4(i) + βΣj∈N4(i)[dep
2(j) + δ3(j) 

+ βΣj0∈N3(j)dep
2(j0)] 
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Substituting (A.1) gives: 

dep4(i) := dep3(i) + δ4(i) + βΣj [M
3(j) + βδ2(j)ρ1(j0∗) 

+ βΣj0 [M
2(j0) + βδ2(j0)ρ1(j00)]] 

where Mk(i) = Σkδ
k(i) and δk(i) = ρk(i), ∀i ∈ V . 

Further simplify dep4(i) gives: 

dep4(i) := dep3(i) + δ4(i) + Σj [βM
3(j) + β2δ2(j)ρ1(j0∗) 

+Σj0 [β
2M2(j0) + β3δ2(j0)ρ1(j00)]] 

We can rewrite the above expressions as: 

dep4(i) := dep3(i) + β0A +Σj [βB + β2C +Σj0 [β
2D + β3E]] (A.3) 

Where: 

• A = δ4(i): 1-step neighbors of i removed at k = 4 

• B = M3(j): 2-step neighbors of i removed at k = 1, 2, 3 

• C = δ2(j)ρ1(j0∗): 3-step neighbors of i removed at k = 1 

• D = M2(j0): 3-step neighbors of i removed at k = 1, 2 

• E = δ2(j0)ρ1(j00): 4-step neighbors of i removed at k = 1 

By generalizing equation (A.3) (k = 5, ..., n), we observe that at every k-index, the 

number of n-step removed neighbors of i is multiplied by βn−1 . This concludes our 

proof. Essentially, the parameter β quantifies the contribution of node j to the total 

dependence value of node i. Thus, varying β in the range ]0, 1[ will not have any impact 

on the value of the k-index where we should stop the k-shell decomposition method — 

by varying β, we are impacting the contribution of any node j to the total dependence 

value of node i by the same proportion. Thus varying the βn−1 does not have any impact 

in our criteria to stop the k-shell decomposition method introduced in Sect. 4.4.1. 



Appendix B 

Parameter S: steepness of the 

curve 

The parameter S controls the steepness of the curve in eq.(4.5) (see Fig. B.1). For our 

dataset, we obtained the best results with S = 50 (i.e., H1 and H2) and S = 110 (H3). 

Figure B.1: ρ curve for several values of the parameter S. 
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In addition to this dissertation, the presented results are also documented in the follow-

ing published papers. 

• Braulio Dumba, Zhi-Li Zhang. ”Uncovering the Nucleus of Social Networks”. 

Proceedings of the 10th ACM Conference on Web Science (WebSci’18), May 27-30, 

2018, Amsterdam, Netherlands. 

• Braulio Dumba, Zhi-Li Zhang, ”Uncovering the Nucleus of a Massive Reciprocal 

Network”, World Wide Web Journal - Special issue on Social Computing and Big 

Data Applications, (2018): doi.org/10.1007/s11280-018-0609-7. 

• Braulio Dumba, Zhi-Li Zhang, ”Unfolding the Core Structure of the Recipro-

cal Graph of a Massive Online Social Network.”, Proceedings of the 10th Annual 

International Conference on Combinatorial Optimization and Applications (CO-

COA’16), Hong Kong, China, December 16-18, 2016. 

• Braulio Dumba, Golshan Golnari, Zhi-Li Zhang, ”Analysis of a Reciprocal Net-

work Using Google+: Structural Properties and Evolution.”, Proceedings of the 

5th International Conference on Computational Social Networks (CSoNet’16), Ho 

Chi Minh City, Vietnam, August 2-4, 2016. 

• Eman Ramadan, Hesham Mekky, Braulio Dumba, Zhi-Li Zhang, ”Adaptive 

Resilient Routing via Preorders in SDN”, Proceedings of the 4th Workshop on 

Distributed Cloud Computing (DCC’16), Chicago, IL, July 25, 2016. 
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• Braulio Dumba, Hesham Mekky, Sourabh Jain, Guobao Sun, Zhi-Li Zhang, ”A 

Virtual Id Routing Protocol for Future Dynamics Networks and Its Implementa-

tion Using the SDN Paradigm.”, Journal of Network and Systems Management, 

24(3), 578-606. doi:10.1007/s10922-016-9373-0. 

• Braulio Dumba, Hesham Mekky, Guobao Sun, Zhi-Li Zhang, ”In-Network Dy-

namic Pathlet Switching with VIRO for SDN Networks”, International Work-

shop on Computer and Networking Experimental Research using Testbeds (CN-

ERT’15), co-located with IEEE ICDCS’15, Columbus, Ohio June 19, 2015. 

• Braulio Dumba, Guobao Sun, Hesham Mekky, Zhi-Li Zhang, ”Experience in 

Implementing & Deploying a Non-IP Routing Protocol VIRO in GENI.” Inter-

national Workshop on Computer and Networking Experimental Research using 

Testbeds (CNERT’14), co-located with IEEE ICNP’14 , The Research Triangle, 

NC, Oct 24, 2014. (Best Paper) 

• Braulio Dumba, Guobao Sun, Hesham Mekky, Zhi-Li Zhang, ”Poster: VIRO-

GENI: Deployment of a plug & play, scalable, robust virtual Id routing in GENI.”, 

The 20th GENI Engineering Conference (GEC20) , Davis, CA, June 21-24, 2014. 
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