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Abstract—Many real-world (cyber-)physical infrastructure sys-
tems are multi-layered, consisting of multiple inter-dependent
networks/layers. Due to this interdependency, the failure cascade
can be catastrophic in a inter-dependent, multi-layered system,
and even lead to the break-down of the entire system. The 2003
blackout of the Italian power grid is reportedly the result of a
cascading failure due to the inter-dependency of the power grid
and the communication network that it relies on. In this paper, we
propose a theoretical framework for studying cascading failures
in an inter-dependent, multi-layer system, where we consider
the effects of cascading failures both within and across different
layers. The goal of the study is to investigate how different
couplings (i.e., inter-dependencies) between network elements
across layers affect the cascading failure dynamics. Through
experiments using the proposed framework, we show that under
the one-to-one coupling, how nodes from two inter-dependent
networks are coupled together play a crucial role in the final
size of the resulting failure cascades: coupling corresponding
nodes from two networks with equal importance (i.e., “high-
to-high” coupling) result in smaller failure cascades than other
forms of inter-dependence coupling such as “random” or “low-
to-high” coupling. Our results shed lights on potential strategies
for mitigating cascading failures in inter-dependent networks.

I. INTRODUCTION

We now live in an increasingly connected world which
hinges critically on many inter-dependent cyber-physical in-
frastructure systems. These systems include (smart) power
grids, intelligent transportation systems, communication net-
works and the global Internet. These infrastructures rely on
computer and control systems as well as communication
networks to sense, collect, estimate the system state, environ-
ment and other information, invoke and execute appropriate
computations and control strategies to adjust and adapt to
changes in the system state and to actuate the physical system
components to respond to such changes. The cyber system
components also serve as a crucial interface between the
physical system components and human operators (as well
as end users who are ultimate producers/consumers of much
of the information, services or goods that the cyber-physical
infrastructures provide).

The inter-dependence of critical cyber-physical infrastruc-
ture systems is perhaps best exemplified by the relations
between power grids and communication networks where
power grids rely on communication networks to deliver the
state information of the power system to the control system
and relay control back to the power system, while the com-
munication networks depend on the same power grids for
the electrical supply. Due to such interdependence, element
faults in one network, e.g., crashes of a few switches in the
communication network that is used to relay information and

control to a smart grid, can induce failures in the other, i.e.,
the power grid, which would in turn lead to additional failures
in the communication network, thereby triggering a cascade
of failures in these two inter-dependent networks. It has been
reported that a number of electrical blackouts, such as the one
in Italy on 28 September 2003 [1], have in fact been caused
by such inter-dependency induced cascaded failures.

We note that the phenomenon of cascading failures can
occur in a single network. For example, cascading failures
occur frequently in a power grid due to the physical nature
of the system as failures of transmission lines or power
generators can trigger additional node or line failures due to
load imbalance or thermal effect. In a communication network,
network element (router or link) failures will trigger network
control elements to exchange route control messages and re-
compute routes to re-route traffic around failed links/nodes;
cascading failures may be triggered due to excessive route re-
computation overloads at surviving network elements, which
lead to further failures. In a multi-layered system of inter-
dependent networks, failures of network elements in one
constituent network (also simply referred to as one layer
of the multi-layered system) may not only trigger cascades
with the same layer, but also trigger failures of network
elements in other constituent networks (layers) of the system.
Inter-dependencies across the constituent networks of a multi-
layered system can induce cascading failures with very differ-
ent characteristics and dynamics than those occurring within
only one layer, often causing wider and more severe damages
to the overall system. To assess and enhance the resiliency
of a multi-layered systems of inter-dependent networks, it is
therefore imperative to understand how inter-dependencies af-
fect cascading failures within and across constituent networks
in a multi-layer system.

In this paper we propose a theoretical framework for
studying cascading failures in an inter-dependent, multi-layer
system, where we consider the effects of cascading failures
both within and across different layers. The goal of the study is
to investigate how different couplings (i.e., inter-dependencies)
between network elements across layers affect the cascading
failure dynamics. For simplicity of exposition, we consider
a two-layer system with two constituent networks of equal
size, and adopt a simple one-to-one coupling map across the
two layers. Cascading failures within each layers are modelled
using the standard linear threshold model1. We examine how

1We remark that our theoretical framework can be applied to (or generalized
to) multi-layer systems with more than two networks with more complex
coupling functions and cascading failure models.
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coupling of nodes of different “importance” or “criticality” (as
measured by various metrics e.g., by node degree) from the
two constituent networks affect the cascading failure dynamics
under varying initial failure sizes and cascading thresholds
within each layer. We show that under the one-to-one cou-
pling map, how nodes from two inter-dependent networks
are coupled together play a crucial role in the final size of
the resulting failure cascades: coupling corresponding nodes
from two networks with equal importance (i.e., “high-to-high”
coupling) result in smaller failure cascades than other forms
of inter-dependence coupling such as “random” or “high-low”
coupling. In particular, given a two-layered system with two
identical networks, “high-to-high” coupling produces a mirror
effect in that the coupling exactly mirrors the cascade within
each layer and does not produce additional failures than when
the two networks are independent.

II. RELATED WORK

Due to its increasing importance, resilience of inter-
dependent networks has attracted a flurry of interest from
a broad and diverse array of research communities. Using
a percolation theory-based framework with random graph
models, Buldyrev et al [2] demonstrate that interdependent
networks can behave very differently from each of their
constituents. In their work – and those of many others, the
“robustness” of interdependent networks is quantified in terms
of asymptotic statistical properties such as the existence of
giant connected components under random failures. It is well
known from the theory of complex networks that (an ensemble
of random) power-law networks are more resilient to random
node failures, as there is a phase transition in the fraction
of random node failures, below which the giant connected
component exists with high probability. In [2] Buldyrev et al
show that when nodes from two “robust” power-law networks
are randomly coupled together one-to-one, they become more
vulnerable to random failures in the sense that no giant
connected component exists with high probability under any
fraction of random node failures. In a follow-up work, Parshani
et al. [3] show that decreasing the interdependency of the
layers, by decoupling some nodes (as are called autonomous)
which do not require any resource from the other layers, the
failure cascade can be mitigated. In this work, the nodes were
picked randomly to become autonomous nodes. Schneider et
al. [4] suggest a centrality based method for picking the au-
tonomous nodes and show how effectively this method reduces
the number of required autonomous nodes by a factor of five
compared with the random method. In another work, Brummit
et al. [5] pursue the Bak-Tang-Wiesenfeld sandpile model [6]
to study failure cascades in inter-dependent networks. They
show that adding a few interconnections between the layers
of the network is beneficial, but it becomes destructive if
the number of interconnections are too many. They find the
optimal degree of interdependency in which the failure cascade
is minimized.

As in the case of robustness of single networks, the afore-
mentioned characterizations of inter-dependent networks based

on random graph models/percolation theory provide useful in-
sight into the general statistical properties of interdependences
over ensembles of random graphs/networks. In practice, how-
ever, real networks are deterministic and finite. In particular,
engineered infrastructure networks such as power-grids and
communication networks, are designed to perform certain
specific functions, many of which arguably do not follow
the “power-law” degree distribution. Furthermore, although
the degree of interdependency is important in controlling
failure cascades in interdependent networks, it is not always
the case to be able to determine the number of autonomous
nodes and in some applications this number is given (the
resources are limited). In those cases, designing the way
that non-autonomous nodes from different layers are coupled
together is another effective solution to control and mitigate
failure cascades. Rosato et al. [1] conduct a focused study
of the inter-dependency between the Italian power grid and
Italian communication network, where they demonstrate that
line failures in the Italian power grid network can severely
affect the Italian communication network even in the case of
moderate interconnection of these two networks. In their study,
the authors assume that the nodes in the Italian communication
network draw power supply from the geographically close
nodes in the Italian power grid network. In [7] Ranjan and
Zhang proposal a graph-theoretical finite network model for
representing inter-dependent networks and extend the struc-
tural/topological centrality measure [8] to develop a robust-
ness metric of inter-dependent networks. Using this robustness
metric, they show that both the number of coupled nodes
from two inter-dependent networks and how they are coupled
together can play a critical role in determining the overall
robustness of inter-dependent networks. In [9] Nguyen et al
study the Interdependent Power Network Disruptor (IPND)
optimization problem to identify critical nodes in an interde-
pendent power network whose removals maximally destroy its
functions. Our work differs from these existing studies in that
we not only consider the effects of cascading failures both
within and across different layers, but also investigate how
different ways of interdependency (“coupling”) affect failure
cascades in inter-dependent network. We evaluate the results
on both real and synthetic networks.

Fig. 1: Bijective inter-connection of layer 1 to layer 2
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III. FAILURE CASCADE MODEL
Consider a network G(V,E), where V is the set of nodes

and E is the set of edges. A failure cascade is initiated from a
subset of nodes and yields a (larger) set of failed nodes. The
failure cascade can be modeled as follows:

F : P(V )→ P(V ), (1)

where P(V ) is the power set of nodes and F is the failure
function in this network. F depends on the connectivity of
the nodes (network topology) and how the failure cascades
through the network. In most real networks, when a node
losses a majority of its connections to other nodes, the node
practically becomes nonfunctional, thus “fails”. The linear
threshold (LT) model [10] well captures this phenomena in
which node i is considered to have failed when the portion
of its neighboring nodes N(i) which have failed is larger than
some threshold θ:

Σ j∈N(i)w jiδ( j)≥ θ, (2)

where wi j’s are importance weights assigned to the neighbor-
ing nodes. In the case of uniform weighting, wi j = 1. Consider-
ing the LT model as the cascading function, the failure in one
network starts from a set of failed nodes and cascades through
the network in accordance with eq. (2). Note that the failure
is considered to be progressive, namely when a node fails it
does not recover throughout the process [10]. (For the non-
progressive LT model, please refer to [11].) In a progressive
cascading model, F is determined deterministically for a fixed
θ and a given network G.

Real systems are not always as simple as a single layer
network described above. They possess more complex struc-
tures, comprised of more than one network (or layer), where
nodes in one layer require resources (i.e., power) from nodes
in other layers, and in turn supply resources (e.g., control) to
nodes in other layers. Such networks, in which the layers are
inter-connected to each other, are referred to as interdependent
networks. In an interdependent network, a node failure in
one layer causes its dependent nodes in other layers (i.e.,
those relying on the resources supplied by the failed node to
function) also to fail. For example, in fig. (1) if node x2 fails,
its dependent nodes in the other layer, i.e. y2 and y3 fail as well.
Thus, in interdependent networks an initial failure in one layer
may not only cause a failure cascade within the same layer, but
also can triggers failure cascades in other layers. The failure
cascadse in other layers in turn trigger further failures in the
original layer, creating a “vicious cycle” which may lead to
the break-down of the entire system. While interdependency in
such networks is inevitable, it is possible to carefully “design”
the inter-connections between the layers so as to mitigate the
effects of failure cascades.

For this purpose, in this paper we propose a theoretical
framework to model and study failure cascades in interde-
pendent networks. Unlike a single layer network, we argue
that in modeling inter-dependent networks, it is important
to distinguish the functionality of “inter-connecting links”
(interdependencies) between nodes across layers from the

regular links between nodes within a single layer, as the failure
cascading processes within a single failure and across layers
are general very different. For example, failure of a node in
general does not automatically leads to the failure of its neigh-
boring nodes within the same layer (unless a large portion of
neighboring nodes fail under the LT model discussed earlier).
On the other hand, failure of a node (i.e., a power supply node)
will cause its dependent nodes (e.g., communication or control
nodes) in other layers to become non-functional, thus “fail”
(with high probability), unless certain protection mechanisms
(e.g., backup power) are provisioned. Even in the latter case,
such protection mechanisms are often temporal and simply
delay the potential failure if the failed nodes are not restored
and recovered in time. We present the following general failure
cascade model for an interdependent network with two layers
G1(V1,E1) and G2(V2,E2), where F represents the function
modeling the failure cascade within a layer and T the function
modeling the failure cascade across the layers:

F1 : P(V1)→ P(V1),

F2 : P(V2)→ P(V2),

T1 : V1→ P(V2),

T2 : V2→ P(V1). (3)

Functions F1 and F2 are not necessarily injective or surjective.
Fig. (1) illustrates a bijective function T1 from layer 1 to layer
2 (T2 is not shown).

In this paper, we show how a proper choice of the functions
which model failure cascades across the layers can have a
significant impact on (triggering/mitigating) the overal failure
cascades across the layers. For the ease of exposition, we
consider only a bidirectional T instead of two separate uni-
directional T1 and T2. In other words, we assume that every
node in each layer is served by a unique node (in the other
layer) on which it relies for its resources but also for which it
supplies the required resources. To have the bijective property
in both directions, T is a “one-to-one” node mapping (or
coupling) between the two layers, i.e. T : V2↔V1.

IV. EXPERIMENTS AND RESULTS

In this section, we investigate the effect of failure cascade
modeling functions, i.e. T and F in eq. (3), on failure
cascades across the layers of an interdependent network. Using
the LT model as the cascading function within a layer, F
is a function of the threshold θ. For the interdependency
(“coupling”) function T , we study three representative ways
of coupling: 1)“high-to-high” degree coupling, in which the
nodes in each layer are sorted based on their degree and are
coupled to their corresponding (the same rank) nodes in other
layers, 2)“high-to-low” degree coupling with pairing the node
in a reverse ordering of their degree, and 3)“random” coupling.

We conduct a number of experiments for a wide range of
the LT threshold values (θ ∈ [0.1,0.9]) and initial failure sizes
(sinit ∈ [1,n], n is the number of nodes in each layer). For a
fixed size sinit of an initial failure, we pick a random sinit
number of nodes as the initiators of the failure. However,
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Fig. 2: Failure cascade in Italian power grid interdependent
network for a fixed threshold and three different coupling.

Fig. 3: Failure cascade in Esnet interdependent network for a
fixed threshold and three different coupling.

Fig. 4: Failure cascade in Italian power grid interdependent
network for a range of thresholds and high-to-high coupling.

Fig. 5: Failure cascade in Italian power grid interdependent
network for a range of thresholds and low-to-high coupling.

nodes possess different topological importance (centrality), the
failure of which can lead to varying sizes of failure cascades
(within each layer). Therefor, for each sinit we simulate the
failure cascades for 10,000 random instance initiators and
report the average failure size. Fig. (2) shows the results of
failure cascades in the Italian power grid network [1] (n= 68),
when it is coupled with a copy of its own. The experiments are
conducted for a fixed threshold of θ = 0.7 in both layers and
the results are reported in terms of number of nodes failed in
one layer at the end of the cascade process (due to one-to-one
coupling, the number of failed nodes are equal in two layers
at the end of the cascade). We also perform the exact same
set of experiments on the Esnet network, the US DoE energy
science network with n = 68 number of nodes. The results
are reported in fig. (3). From figs. (2) and (3), we see that
“high-to-high” coupling show enormously better performance
in mitigating the failure cascade than the “low-to-high” and
“random” coupling; while “high-to-high” curve is very close
to the line s f in = sinit , two other couplings result in 150%
increase in the final failure size over the initial size in some
instances for the Italian power grid case (even worse for the
Esnet case). The line s f in = sinit (not shown in the figures)
represents the case where the failure does not cascade and
the final failure size is equal to the initial failure size. We
also present further failure results for a range of thresholds

θ∈ [0.1,0.9] for the Italian power grid interdependent network
in figs. (4) and (5) for the cases of “high-to-high” and “low-
to-high” couplings respectively. Comparing these two figures,
it can be inferred that “high-to-high” coupling outperforms
“low-to-high” coupling for every θ. Furthermore, increasing θ

results in smaller failure cascade sizes, while increasing the
initial failure size leads to larger failure cascades. (Due to
space limitation, we omit reporting the corresponding results
for the case of Esnet, which are very similar.)

Figs. (6) and (7) reflect the same experiment results ex-
plained above, but have been depicted in different way. To
avoid making the figures crowded, we have presented the
curves for every three other value of sinit from 16 to 34. It can
be seen that for every sinit , s f in follows a sigmoid-like function
in terms of 1−θ: there exists one transition point before which
the rate of growth is increasing (convex function) and after
which the rate of growth is decreasing (concave function). The
sigmoid behavior of failure cascades implies that decreasing
the threshold up to some transiting point accelerates the failure
cascade, but passing that point the rate of cascade slows down.
The figures suggest that the transition point is independent of
sinit ; it happens around θ ' 0.55 for “high-to-high” coupling
and around θ' 0.65 for “low-to-high” coupling. The following
general function captures the sigmoid behavior of the final
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Fig. 6: Failure cascade in Italian power grid interdependent
network for a range of initial failure size and high-to-high
coupling

Fig. 7: Failure cascade in Italian power grid interdependent
network for a range of initial failure size and low-to-high
coupling.

Fig. 8: Failure cascade in Italian power grid interdependent
network for a targeted attack and fixed threshold.

Fig. 9: Mirroring effect of failure cascade in Italian power grid
interdependent network.

failure size:

s f in =
n−g1(sinit)

1+ exp(−g2(sinit)(g3(θ)))
+g1(sinit), (4)

where g1, g2, and g3 are linear functions. For example, for
“high-to-high” coupling in the Italian power grid network,
these g functions are best fitted with the following linear func-
tions: g1(x)= 1.25x−2, g2(x)= 1

9 x+ 2
9 , and g3(x)=−10x+5.

The closed form formulation presented in eq. (4) can be useful
in predicting the failure size for the large real networks where
the simulation is costly or even infeasible in some cases.

Up to now, all the experiments presented in this section
have been designed for initial random failure. Fig. (8) shows
the failure result when the initial failure is targeted: namely,
the failures of more important and central nodes are the
results of a targeted attack. In these experiments, the nodes
with higher degree are considered to be the initial set of
failed nodes. Studies [12] show that the targeted attacks in
real networks, where the degree distribution follows a power
law distribution, are more harmful than random attacks. Our
experiment results show that the “high-to-high” coupling in
interdependent network outperforms the other two couplings in
targeted attacks as well and assures higher resilience to failure
cascades. The failure results obtained for “random” coupling

are the average of 10,000 experiments of randomly coupling
nodes in the two layers.

As discussed in the previous section, without the interde-
pendency the failure cascade may be minimum in each layer,
which is the result of some initiated failure in that layer (i.e.,
only F1). Failures in interdependent networks, on the other
hand, can cause a “vicious” cycle: when a failure occurs in
one layer, besides cascading through the same layer (F1 in eq.
(3)), it triggers failures in other layers (T1); These failures in
turn cause further failures in the original layer (F2 and then T2)
– this cycle continues. To investigate the effects of different
couplings in triggering/mitigating failure cascades, they should
be compared against the failure cascade in a single layer
network. In fig. (9) we compare the failure cascade for the
three coupling cases against the failure cascade in one-layer
network. This experiment is the same as the experiment in fig.
(2) but adding the result of the least possible failure cascade
as well, i.e. failure cascade in one-layer Italian power grid
network. It can be seen that, interestingly, the “high-to-high”
coupling is in fact equal to having no interdependency at all.
This happens due to the mirroring effect in which the coupling
exactly mirrors the cascade in the two layers and does not lead
to further failure than the one is already happening in each of
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Fig. 10: Failure cascade in an interdependent network with
Italian power grid network as one layer and Esnet as the other.

Fig. 11: Failure cascade in an interdependent network with two
layers generated by preferential attachment,

the layers. Thus, leveraging the mirroring effect we are able to
design the interdependency functions to minimize the failure
cascade in interdependent networks. In the case of identical
layers (i.e. layers with the same topology), the best coupling
is to pair congruent (equivalent) nodes of the two layers which
is the same thing done in “high-to-high” coupling in our
experiment fig. (9). However, when the layers are not identical,
it is more complicated to find the optimum solution. In this
case, we should find the best alignment of the layers to benefit
from the mirror effect the most possible. We have conducted
two experiments on two interdependent networks with non-
identical layers: 1) Italian power grid network coupled with
Esnet network (fig. (10)), and 2) two networks generated by
preferential attachment model [13] with the same size of n=68
nodes (fig. (11)). The figures indicate that the “high-to-high”
coupling outperforms the other two couplings, suggesting that
“high-to-high” coupling is more successful in imitating the
mirror effect, i.e., coupling the congruent nodes of the layers
in these experiments.

V. CONCLUSION

In this paper, we have developed a theoretical framework
for studying cascading failures in an inter-dependent, multi-
layer system, where we consider the effects of cascading
failures both within and across different layers. The goal of
the study is to investigate how different couplings (i.e., inter-
dependencies) between network elements across layers affect
the cascading failure dynamics. Through experiments using
the proposed framework, we show that under the one-to-one
coupling map, how nodes from two inter-dependent networks
are coupled together play a crucial role in the final size of
the resulting failure cascades: coupling corresponding nodes
from two networks with equal importance (i.e., “high-to-high”
coupling) result in smaller failure cascades than other forms
of inter-dependence coupling such as “random” or “high-low”
coupling. In particular, given a two-layered system with two
identical networks, “high-to-high” coupling produces a mirror
effect in that the coupling exactly mirrors the cascade within
each layer and does not produce additional failures than when
the two networks are independent. Our results shed lights on

potential strategies for mitigating cascading failures in inter-
dependent networks, and also pose interesting and important
new research questions.
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Herrmann, “Towards designing robust coupled networks,” Scientific
reports, vol. 3, 2013.

[5] C. D. Brummitt, R. M. DSouza, and E. Leicht, “Suppressing cascades of
load in interdependent networks,” Proceedings of the National Academy
of Sciences, vol. 109, no. 12, pp. E680–E689, 2012.

[6] P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality,” Physical
review A, vol. 38, no. 1, p. 364, 1988.

[7] G. Ranjan and Z.-L. Zhang, “How to “glue” a robust smart-grid: A finite
network theory of inter-dependent network,” in 7th Cyber Security &
Information Intelligence Research Workshop, Sep 2011.

[8] ——, “Geometry of complex networks and topological centrality,”
Physica A: Statistical Mechanics and its Applications, vol. 392, no. 17,
pp. 3833–3845, 2013.

[9] D. T. Nguyen, Y. Shen, and M. T. Thai, “Detecting critical nodes
in interdependent power networks for vulnerability assessment,” IEEE
Transactions on Smart Grid (ToSG), vol. 4, no. 1, pp. 151–159, March
2013, special Issues on Smart Grid Communication Systems: Reliability,
Dependability & Performance.
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