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. Connecting to the Maryland Advanced Research Computing Center (MARCC)

Two-factor authentication

In order to connect to MARCC we need to setup the ‘two-factor authentication’ protocol.

For this you will need:

• The username sent to you by MARCC via email

• The temporary password sent to you by MARCC via email

• The Google Authenticator

The Google Authenticator can be installed from the Play Store on your mobile device. You will also
need a Barcode Scanner. These two apps look like this:

Now go to this page from your laptop:

https://password.marcc.jhu.edu/?action=qrretrieve

You will be prompted for username and password, here we need to enter what we received by email:

At this point we link the Google Authenticator with MARCC using the barcode provided:
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The above steps are performed only once. From now on we can login into MARCC by using our
username, password, and verification code. The verification code is the number provided by the
Google Authenticator, as in the following snapshot:

The standard procedure for logging in is discussed in Tutorial 1.1.
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Connecting from a Windows laptop

If you are using Windows on your laptop, then in order to connect to MARCC you will need to have
a software that can handle a secure shell (SSH) connection.

A popular choice is Putty. This can be downloaded from:

http://www.putty.org

When you execute Putty you will see something like the following:

In the field ‘Host Name’ we enter:

gateway2.marcc.jhu.edu

In order to be able to see graphics over this connection, we need to enable ‘X11 forwarding’.
For this we proceed as indicated below:
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Now we can save these settings, so that next time we will just click on the session name, say ‘marcc’:

Visualizing graphics from a Windows laptop

In order to visualize graphics when using Putty, your laptop must be able to understand the ‘X11
protocol’. This can be done by downloading the program Xming.

The installation file can be found at the following link:

https://sourceforge.net/projects/xming/files/Xming/6.9.0.31/Xming-6-9-0-31-setup.exe/download

After Xming is installed, the procedure for running calculations and visualizing graphics on MARCC
is as follows:

• We launch Xming. This application will now run in the background.

• We execute Putty.

From this point onwards everthing works exactly in the same way as for users of Linux or Mac.
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. An introduction to density functional theory for experimentalists

Tutorial 1.1

Login shell and compilation

In order to work on the HPC cluster we need to establish a secure connection. We first open a
terminal, and then type:

$ ssh -X gateway2.marcc.jhu.edu -l fgiusti1.temp@jhu.edu

where fgiusti1.temp@jhu.edu must be replaced by the username that you have been assigned.
After entering your password you will see something like:

[fgiusti1.temp@jhu.edu@login-node04 ~]$

This is the command line that we will use from now on.

We can customize the ‘Unix shell’ environment by shortening the prompt, creating a couple of ‘aliases’,
and adding modules that we will need later on. We copy/paste the following into the terminal (it is
important to copy/paste exactly as it is, since the bash shell is very picky with spaces):

cat >> .bashrc << EOF

PS1="$ "

alias c="clear"

alias l="ls -lh"

module load fftw3/intel/3.3.4

module load xcrysden

module load gnuplot/5.0.0

module load openmpi/intel/1.8.4

EOF

source ~/.bashrc

From now on the prompt will be ‘$’ and the command ‘c’ and ‘l’ will clear the screen and list the
content of a directory, respectively.
We can now create our working directory for this school:

$ mkdir scratch/summerschool ; cd ~/scratch/summerschool

In this school we will be using the Quantum ESPRESSO (QE) software package.
The website can be found at www.quantum-espresso.org
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In order to use QE we download the package and we install it in our working directory. We first
download the latest release of QE as a zipped archive:

$ wget http://www.qe-forge.org/gf/download/frsrelease/211/968/espresso-5.4.0.tar.gz

Then we unpack and remove the zipped archive:

$ tar xfz espresso-5.4.0.tar.gz ; rm espresso-5.4.0.tar.gz

QE is now unpacked. It is useful to take a look inside the directory:

$ cd espresso-5.4.0 ; l

total 128K

drwxr-xr-x 2 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 archive

drwxr-xr-x 2 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 clib

-rwxr-xr-x 1 fgiusti1.temp@jhu.edu paradim 2.3K Apr 24 17:18 configure

drwxr-xr-x 6 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 COUPLE

drwxr-xr-x 5 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 CPV

drwxr-xr-x 3 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 dev-tools

drwxr-xr-x 6 fgiusti1.temp@jhu.edu paradim 12K Apr 24 17:23 Doc

-rw-r--r-- 1 fgiusti1.temp@jhu.edu paradim 3.4K Apr 24 17:19 environment_variables

drwxr-xr-x 2 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 FFTXlib

drwxr-xr-x 2 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 include

drwxr-xr-x 3 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 install

drwxr-xr-x 2 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 LAXlib

-rw-r--r-- 1 fgiusti1.temp@jhu.edu paradim 18K Apr 24 17:19 License

drwxr-xr-x 2 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 LR_Modules

-rw-r--r-- 1 fgiusti1.temp@jhu.edu paradim 13K Apr 25 13:19 Makefile

drwxr-xr-x 2 fgiusti1.temp@jhu.edu paradim 12K Apr 24 17:20 Modules

drwxr-xr-x 7 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 PP

drwxr-xr-x 2 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 pseudo

drwxr-xr-x 6 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 PW

-rw-r--r-- 1 fgiusti1.temp@jhu.edu paradim 1.3K Apr 24 17:19 README

drwxr-xr-x 3 fgiusti1.temp@jhu.edu paradim 4.0K Apr 24 17:19 upftools

At the beginning of this school we will be mainly interested in the program pw.x, which is contained in
the directory PW. In order to use this program we need to compile the fortran source into an executable.
This operation is performed by the script Makefile. Makefile in turn needs to know where to look
for the compilers and numerical libraries. This information is determined by the program configure.
Therefore we issue:
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$ ./configure ; make pw

This operation will require approximately 10 min.

While we wait we may as well check the page of MARCC where the cluster Bluecrab is described:
Maryland Advanced Research Computing Center.

At the end of the compilation we should find a pointer to the newly-created executable pw.x inside
the directory bin:

$ ls -l bin

lrwxrwxrwx 1 fgiusti1.temp@jhu.edu paradim 14 Jun 28 18:35 pw.x -> ../PW/src/pw.x

Test run

Now we want to prepare a very simple job and execute it on the cluster. The goal of this operation
is to make sure that everything runs smoothly.
We will consider a simple total energy calculation for silicon in the diamond structure. In order to
proceed we first need a ‘pseudopotential’. Pseudopotentials will be introduced formally in Lecture
2.2, for now it suffices to know that for each atom we will need one pseudopotential. The QE pseu-
dopotential libraries can be found at http://www.quantum-espresso.org/pseudopotentials.
By clicking on this link we find the following periodic table

Now we can click on silicon and we will see a list of available pseudopotentials. In principle we could
download the entire library once and for all, but for now let us proceed on a case-by-case basis. In
this example we will use the pseudopotential labelled Si.pz-vbc.UPF. By hovering on this link with
the mouse we can copy/paste the web link, and we can use it to download the file directly on the
HPC cluster:

$ cd ..

$ mkdir tutorial-1.1 ; cd tutorial-1.1

$ wget http://www.quantum-espresso.org/wp-content/uploads/upf_files/Si.pz-vbc.UPF

Now we should have the pseudopotential file inside the directory tutorial-1.1. We can see inside
this plain text file by using the command more:

$ more Si.pz-vbc.UPF
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<PP_INFO>

Generated using unknown code

Author: von Barth and Car Generation date: before 1984

Info: Si LDA 3s2 3p2 VonBarth-Car, l=2 local

0 The Pseudo was generated with a Non-Relativistic Calculation

0.00000000000E+00 Local Potential cutoff radius

nl pn l occ Rcut Rcut US E pseu

3S 0 0 2.00 0.00000000000 0.00000000000 0.00000000000

3P 0 1 2.00 0.00000000000 0.00000000000 0.00000000000

</PP_INFO>

<PP_HEADER>

0 Version Number

Si Element

NC Norm - Conserving pseudopotential

F Nonlinear Core Correction

SLA PZ NOGX NOGC PZ Exchange-Correlation functional

4.00000000000 Z valence

0.00000000000 Total energy

0.0000000 0.0000000 Suggested cutoff for wfc and rho

1 Max angular momentum component

431 Number of points in mesh

2 2 Number of Wavefunctions, Number of Projectors

Wavefunctions nl l occ

3S 0 2.00

3P 1 2.00

</PP_HEADER>

<PP_MESH>

<PP_R>

1.30825992062E-03 1.34137867819E-03 1.37533584110E-03 1.41015263368E-03

1.44585081756E-03 1.48245270526E-03 1.51998117417E-03 1.55845968079E-03

...

For simplicity we also copy the executable inside the current working directory (this is not standard
practice but it makes things easier to understand the first time):

$ cp ../espresso-5.4.0/bin/pw.x ./

At this point we have the executable pw.x and the pseudopotential for silicon Si.pz-vbc.UPF. We
are missing the input file for the executable, and the job submission script for the HPC cluster.
We can create the simplest possible input file, silicon-1.in, as follows:

$ cat << EOF > silicon-1.in

&control

calculation = 'scf',

prefix = 'silicon',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 2,

celldm(1) = 10.28,

nat = 2,

ntyp = 1,

ecutwfc = 18.0,

/
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&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Si 28.086 Si.pz-vbc.UPF

ATOMIC_POSITIONS

Si 0.00 0.00 0.00

Si 0.25 0.25 0.25

K_POINTS automatic

4 4 4 1 1 1

EOF

For the job submission script we can create job-1.pbs:

$ cat << EOF > job-1.pbs

#!/bin/bash -l

#SBATCH --reservation=Paradim

#SBATCH --job-name=job-1

#SBATCH --time=00:30:00

#SBATCH --partition=parallel

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=12

#SBATCH --mem-per-cpu=2000MB

mpirun -np 12 pw.x -npool 4 < silicon-1.in > silicon-1.out

EOF

In the current directory we should now see the following:

$ ls

job-1.pbs pw.x silicon-1.in Si.pz-vbc.UPF

Eventually we are ready to submit our first job to the queue. We issue:

$ qsub job-1.pbs

We can check the status of this job in the queue using the command qstat. If we do not remember
our username we can find this information using:

$ whoami

fgiusti1.temp@jhu.edu

$ qstat -u fgiusti1.temp@jhu.edu

login-node04.cm.cluster:

Req'd Req'd Elap

Job id Username Queue Name SessID NDS TSK Memory Time Use S Time

--------------- -------- -------- ---------- ------ --- --- ------ -------- - -----

7415791 fgiusti1 shared job-1 -- 1 12 -- 00:30 Q 00:00
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If the cluster is too busy we can alternatively try to run within an interactive session:

$ interact-paradim -r Paradim -p parallel -n 12 -c 1 -t 60 -m 24G

This command opens a session where we will be able to execute pw.x directly from the command
line, ie without a job submission script.
Here we are requesting 12 CPUs, since -n 12 is the number of tasks, and -c 1 is the number of
cores per task. We are asking for a session of 60 min (-t 60) and with a total memory of 24 GB
(-m 24G).
If we enter an interactive session, then we can simply run pw.x by issuing:

$ mpirun -n 12 pw.x -npool 4 < silicon-1.in > silicon-1.out

This job will only take less than a second to complete. The output file is silicon-1.out and should
look like the following:

$ more silicon-1.out
Program PWSCF v.5.4.0 starts on 8Jul2016 at 8:27:35

This program is part of the open-source Quantum ESPRESSO suite

for quantum simulation of materials; please cite

"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);

URL http://www.quantum-espresso.org",

in publications or presentations arising from this work. More details at

http://www.quantum-espresso.org/quote

Parallel version (MPI), running on 12 processors

K-points division: npool = 4

R & G space division: proc/nbgrp/npool/nimage = 3

Waiting for input...

Reading input from standard input

...

PWSCF : 0.11s CPU 0.18s WALL

This run was terminated on: 8:27:35 8Jul2016

=------------------------------------------------------------------------------=

JOB DONE.

=------------------------------------------------------------------------------=

Generating new jobs

Throughout this school we will prepare input files and job submission scripts by modifying the files
silicon-1.in and job-1.pbs.
Instead of using the cat command as we did in the previous section, we first create two new files by
just copying the previous ones:

$ cp silicon-1.in silicon-2.in

$ cp job-1.pbs job-2.pbs

Now we use vi to modify the newly-created files:

$ vi silicon-2.in

This will open the file inside the current terminal window. The rules for using vi are simple:
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1 We move around using ↑ ↓ → ←

2 In order to change the text we press i and modify as we wish

3 When we are done making changes we press ESC

4 We write the modified file and exit by typing : w q

As an example we now change the parameter ecutwfc from 18 Ry to 30 Ry. This parameter represents
the planewaves kinetic energy cutoff and will be described in Lecture 2.2. We can also change the
Brillouin zone sampling from 4 4 4 1 1 1 to something more accurate, say 8 8 8 1 1 1.
In the case of job-2.pbs we proceed similarly. We first change the input and output filenames into
silicon-2.in and silicon-2.out. We also change the number of CPUs to be used from 4 (-np
4) to 12 (-np 12).
We submit this job as we did earlier:

$ qsub job-2.pbs

During the hands-on session we will explore in detail various calculation parameters and runtime
options.

Documentation

A comprehensive description of the input variables accepted by pw.x can be found here:

http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

During the next few days we will also need documentation for the code ph.x (phonons) and pp.x

(post-processing). These can be found here:

pp.x: http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PH.html

pp.x: http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PP.html

Information about the job scheduling system of MARCC can be found at:
http://www.marcc.jhu.edu/getting-started/running-jobs

In order to find out which ‘queues’ or ‘partitions’ are available we can use the command

$ sinfo -s
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. An introduction to density functional theory for experimentalists

Tutorial 1.2

Hands-on session

Exercise 1

IRepeat the steps illustrated during Tutorial 1.1, in particular:

1 Login into your account, set the modules in the file .bashrc, and create your working directory

2 Download the QE software package, unzip, configure, and make the executable pw.x

3 Download the pseudopotential for silicon, Si.pz-vbc.UPF

4 Create the input files silicon-1.in and submission script job-1.pbs

5 Submit this job and check the output file silicon-1.out

For all these steps you can directly copy/paste the instructions from the PDF document of Tutorial 1.1
(or type everything if you are patient).

Exercise 2

We want to explore one important convergence parameter of DFT calculations, the planewave kinetic
energy cutoff ecutwfc.
To this aim we create a new directory:

$ cd ~/scratch/summerschool ; mkdir tutorial-1.2 ; cd tutorial-1.2

and we copy over the important files generated in the previous exercise:

$ cp ../tutorial-1.1/pw.x ./

$ cp ../tutorial-1.1/Si.pz-vbc.UPF ./

$ cp ../tutorial-1.1/silicon-1.in ./silicon-3.in

$ cp ../tutorial-1.1/job-1.pbs ./job-3.pbs

Using vi we modify the input variable ecutwf to 5 Ry (note 1 Ry = 13.6058 eV). After this change,
line #23 of silicon-3.in should read:

ecutwfc = 5.0,

In order to be consistent with the new names of the input file we must also modify the job submission
script job-3.pbs using vi, so as to have silicon-3.in and silicon-3.out.
Now we submit the job to the cluster as usual:

qsub job-3.pbs

25-29 July 2016 F. Giustino Tutorial 1.2 | 1 of 6



Un
iv
er
si
ty

of
Ox
fo
rd

Pr
of
.

Fe
li
ci
an
o
Gi
us
ti
no

PA
RA
DI
M
Sc
ho
ol

· C
or
ne
ll
,
Ju
ly

20
16

When the job is finished we can analyze the output file silicon-3.out. This output file contains
the most important information regarding your run. Throughout this school we will learn the meaning
of the various sections of this file gradually. For now we concentrate only on a few simple aspects.

First of all we can check that we are using the local density approximation (LDA) to DFT. To see
this, open the output file using vi, and search for the words Exchange-correlation. To activate
the search function in vi we simply press / and enter the search word. You will find:

Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0 0)

Here SLA stands for ‘Slater exchange’, PZ stands for Perdew-Zunger parametrization of the LDA,
NOGX and NOGC say that density gradients are not taken into account (the meaning of this will be-
come clear in Lecture 5.2). The numbers are internal codes of pw.x.

Now we search for the words kinetic-energy cutoff. This should be indentical to the value of
ecutwfc set in the input file. This parameter is the kinetic energy cutoff of the planewaves basis
set, and will be introduced formally in Lecture 2.2. This parameter sets the number of planewaves
in which every Kohn-Sham wavefunction is expanded (ie the number of Fourier components of each
wavefunction). The number of planewaves corresponding to the cutoff ecutwfc can be found by
searching for Kohn-Sham Wavefunctions. You will see the following line:

Kohn-Sham Wavefunctions 0.00 Mb ( 58, 4)

This means that we have 4 Kohn-Sham wavefunctions (corresponding to the 4 valence bands of
silicon), and that each wavefunction is expressed as a linear combination of 58 planewaves.
Now we want to look at the most important quantity in the output file, the DFT total energy. Search
for the marker ! in the output file. You should find:

! total energy = -15.60437814 Ry

This value should be taken with caution: it contains an offset which arises from the use of pseudopo-
tentials (see Lecture 2.2), and it is not referred to vacuum, since there is no vacuum reference when
we perform a calculation in a infinitely-extended crystal. This means that the absolute value of DFT
total energies in extended solids is not meaningful; what is meaningful is the total energy difference
between two configurations.

Finally we look at the timing: search for the word ‘PWSCF :’ (mind the colon and the blanks).
You should find:

PWSCF : 0.08s CPU 0.20s WALL

The number on the left is the CPU-time, that is the execution time as measured on each individual
CPU. The number on the right is the ‘wall-clock’ time, and indicates the actual time elapsed from
the beginning to the end of the run.

Now we want to study how the total energy, the number of planewaves, and the timing vary as a
function of the planewaves cutoff ecutwfc.
IRepeat the above steps by setting ecutwfc to 5, 10, 15, 20, 25, 30, 35, 40 in the input file. It
is convenient to generate separate input/output files and then search for the energy, the number of
planewaves, and the CPU time in each output file. You can collect the results for example by creating
a text file using vi exercise2.txt and entering your results one by one. You should be able to
construct a file looking like this [please note that your numbers will not be identical since this was
executed on a different cluster]:
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$ more excercise2.txt

# ecutwfc (Ry) planewaves energy (Ry) time (s)

5 58 -15.60437814 0.07

10 153 -15.77558550 0.10

15 274 -15.83422234 0.10

20 416 -15.84721988 0.16

25 580 -15.85087570 0.18

30 763 -15.85182962 0.19

35 959 -15.85235153 0.23

40 1185 -15.85268618 0.27

Note: If you do not want to change each input file manually you can use the following loop to generate the files:

$ cat > loop.tcsh << EOF

foreach ECUTWFC ( 5 10 15 20 25 30 35 40 )

sed "s/5\\.0/\${ECUTWFC}/g" silicon-3.in > silicon-\${ECUTWFC}.in

end

EOF

$ tcsh loop.tcsh

Furthermore you can use the command grep in order to extract the information that you are looking for automatically.
For example:

$ grep "\!" silicon-5.out

! total energy = -15.60437814 Ry

At this point we can analyze our results. For this you can either use gnuplot directly on the cluster,
or you can transfer the file exercise2.txt using the command scp or the program filezilla, and
then plot the data using your favourite software (eg Origin or Excel).

For the total energy you should find something like this:

Here we see that, using a cutoff of 25 Ry, we obtain a total energy which is only 12 meV/atom higher
than our best-converged value at 40 Ry. In principle we should test even higher values of ecutwfc
(the correct result is obtained in the limit of this cutoff reaching infinity), but in practice 25 Ry is
good enough for this tutorial. Most quantities that can be computed using DFT depend critically on
this cutoff, therefore it is very important to alway perform this test when running DFT calculations.

If the planewaves cutoff is so important, why can we not use a very large value to be on the safe side?
The answer is that the higher the cutoff, the more time-consuming the calculation. You can test this
directly by plotting the CPU time vs. the cutoff using the values inside the file exercise2.txt.
In this example the runtime is below 1 sec, therefore the choice of the cutoff is not important in prac-
tice. However, in most DFT calculations a careful choice of cutoff can save us weeks of computer time.
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The longer times required for higher cutoffs relate to the fact that we are performing linear algebra
operations using larger vectors to describe the wavefunctions.
IVerify that the number of planewaves increases with the cutoff.
IVerify that a plot of the number of planewaves vs. ecutwfc3/2 yields a straight line:

ICan you explain the origin of this relation between the cutoff and the number of planewaves?
Note: in order to answer this question you will need to go through Lecture 2.2 first.

Exercise 3

We now want to explore one other convergence parameter of DFT calculations for crystals, the Bril-
louin zone sampling K POINTS (to be described in Lecture 2.2).

In the input file silicon-3.in we had requested a uniform sampling of Bloch wavevectors k by
setting 4 4 4 1 1 1. This means that we want to slice the Brillouin zone in a 4×4×4 grid, and we
shift this grid by half a grid spacing in each direction (1 1 1). This shift is used because it usually
provides a better sampling. So now we expect the code to work with exactly 4×4×4 = 64 k-vectors.

INow search for ‘number of k points’ in the output file silicon-4.in. You should find:

number of k points= 10

Therefore the code is using only 10 k-points instead of the expected 64 points. The reason for this
difference is that many points in our grid are equivalent by symmetry. The code recognizes these
symmetries and only performs explicit calculations for the inequivalent points.

IDetermine how the total energy of silicon varies with the number of k-points, using the same
procedure as in Exercise 2. Consider the following situations for the input parameters
K POINTS: 1 1 1 0 0 0 / 2 2 2 0 0 0 / 4 4 4 0 0 0 / 8 8 8 0 0 0 / 16 16 16 0 0 0. For
these calculations you can use our ‘converged’ cutoff ecutwfc = 25.0 Ry.
Note In this case you will need to set the execution flag -npool inside the submission script to 1, for example: -n 8

pw.x -npool 1 instead of the original -n 4 pw.x -npool 4.

IRepeat the last operation, this time using nonzero shifts, eg 1 1 1 1 1 1 / 2 2 2 1 1 1 / 4 4

4 1 1 1 and so on.
You should be able to construct two files similar to the following ones:
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$ more excercise3a.txt

# grid shift energy (Ry) inequiv. k-points time (s)

1 1 1 0 0 0 -14.59239650 1 0.20

2 2 2 0 0 0 -15.66198445 3 0.25

4 4 4 0 0 0 -15.83707680 8 0.21

8 8 8 0 0 0 -15.85079066 29 0.56

16 16 16 0 0 0 -15.85108168 145 2.41

$ more excercise3b.txt

# grid shift energy (Ry) inequiv. k-points time (s)

1 1 1 1 1 1 -15.66368666 1 0.10

2 2 2 1 1 1 -15.83894845 2 0.10

4 4 4 1 1 1 -15.85087570 10 0.22

8 8 8 1 1 1 -15.85108292 60 1.04

16 16 16 1 1 1 -15.85108131 408 6.88

IPlot the total energy as a function of the number of inequivalent k-points in each calculation, both
for the case of the unshifted grid (0 0 0) and the shifted grid (1 1 1). You should obtain something
similar to the following (note the logarithmic scale in the horizontal axis):

Here we can see that by using the 4 4 4 1 1 1 grid we obtain a total energy which is already very
good, < 2 meV/atom away from our best value at 8 8 8 1 1 1. We also see that the shifted grid
converges faster than the unshifted grid.

IPlot the CPU time vs. the number of inequivalent k-points and verify that the time scales approx-
imately linearly with the number of such points.

Exercise 4

In this exercise we want to explore the scaling of DFT calculations as a function of system size.

The input file silicon-1.in has been modified to generate 5 new input files which you can download
and unpack as follows:

$ wget http://giustino.materials.ox.ac.uk/tutorial_1.2_exercise_4.tgz

$ tar xfz tutorial_1.2_exercise_4.tgz ; ls tutorial_1.2_exercise_4

silicon-4.1.in silicon-4.2.in silicon-4.3.in silicon-4.4.in silicon-4.5.in
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These files correspond to supercells of silicon, containing one primitive unit cell (silicon-4.1.in), a
2×2×2 supercell (silicon-4.2.in), and so on, up to 5×5×5 primitive unit cells (silicon-4.5.in).
By looking inside these input files you can check that we have a number of Si atoms ranging from 2
to 250.

INow run pw.x using these five different input files, and extract the CPU time in each case. The
procedure for running jobs is the same as in the previous exercises.
Your data should look similar to the following (note that the timing of each job will depend on the
cluster, but the relative times are meaningful)

# atoms cputime (s)

2 0.09

16 0.44

54 4.53

128 34.82

250 218.78

IPlot the CPU time as a function of the number of atoms. Can you identify a simple law relating
these two quatities?

Generally speaking DFT calculations scale with the cube of the number of atoms, TCPU = const ·N3

(N = number of atoms). This can be verified directly by plotting the above data using the cube of
the first column: this plot should give an approximately straight line.
The take-home message here is that if we double the size of our system, then our DFT calculation
will require approximately 8 times longer to complete (eg 1 week→ 8 weeks).
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. An introduction to density functional theory for experimentalists

Tutorial 2.1

As usual we create a new folder on the HPC cluster:

$ cd ~/scratch/summerschool ; mkdir tutorial-2.1 ; cd tutorial-2.1

Equilibrium structure of a diatomic molecule

In this tutorial we are going to learn how to calculate the equilibrium structures of simple systems.
The formal theory required for these calculations will be discussed in Lecture 3.1, for now we can just
use the following rule of thumb:

Among all possible structures, the equilibrium structure at zero temperature and zero pressure is
found by minimizing the DFT total energy.

The total potential energy is the same quantity that we have been using during Tutorial 1.1 and
Tutorial 1.2 (eg when we did grep "\!" silicon-1.out). This quantity includes all terms of the
electron-ion Hamiltonian, except the kinetic energy of the ions.

Let us calculate the equilibrium structure of the Cl2 molecule.

The Cl2 molecule has only 2 atoms, and the structure is completely determined by the Cl−Cl bond
length. Therefore we can determine the equilibrium structure by calculating the total energy as a
function of the Cl−Cl distance.

The first step is to find a suitable pseudopotential for Cl. As in Tutorial 1.1 we go to
http://www.quantum-espresso.org/pseudopotentials and look for Cl. We recognize LDA
psedupotential by the label pz in the filename. Let us go for the following:

$ wget http://www.quantum-espresso.org/wp-content/uploads/upf_files/Cl.pz-bhs.UPF

We also copy the executable, job submission script, and input file from the previous tutorial:

$ cp ../tutorial-1.1/pw.x ./

$ cp ../tutorial-1.1/job-1.pbs ./

$ cp ../tutorial-1.1/silicon-1.in ./cl2.in

Now we can modify the input file in order to consider the Cl2 molecule:

$ more cl2.in

&control

calculation = 'scf'

prefix = 'Cl2',

pseudo_dir = './',

outdir = './'

/
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&system

ibrav = 1,

celldm(1) = 20.0,

nat = 2,

ntyp = 1,

ecutwfc = 100,

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Cl 1.0 Cl.pz-bhs.UPF

ATOMIC_POSITIONS bohr

Cl 0.00 0.00 0.00

Cl 2.00 0.00 0.00

K_POINTS gamma

Using ibrav = 1 we select a simulation box which is simple cubic, with lattice parameter celldm(1).
Here we are choosing a cubic box of side 20 bohr (1 bohr = 0.529167 Å). The keyword gamma means
that we will be sampling the Brillouin zone at the Γ point, that is k = 0. This is fine since we want to
study a molecule, not an extended crystal. Note that we increased the planewaves cutoff to 100 Ry:
this number was obtained from separate convergence tests.

We can now submit a job in order to check that everything will run smoothly, qsub job.pbs. In
this case it is appropriate to use the submission execution flags -np 8, -npool 1.
Incidentally, from the output file of this run (say cl2.out) we can see the various steps of the DFT
self-consistent cycle (SCF). For example if we look for the total energy:

$ grep "total energy" cl2.out

total energy = -55.44311765 Ry

total energy = -55.73166227 Ry

total energy = -55.83945219 Ry

total energy = -55.84156819 Ry

total energy = -55.84161956 Ry

total energy = -55.84162104 Ry

total energy = -55.84162117 Ry

! total energy = -55.84162119 Ry

The total energy is the sum of the following terms:

Here we see that the energy reaches its minimum in 8 iterations. The iterative procedure stops when
the energy difference between two successive iterations is smaller than conv thr = 1.0d-8.

Now we calculate the total energy as a function of the Cl−Cl bond length. In the reference frame
chosen for the input file above we have one Cl atom at (0,0,0) and one at (2,0,0) in units of bohr.
Therefore we can vary the bond length by simply displacing the second atom along the x axis.
In order to automate the procedure we can use the following script:

sed "s/2.00/NEW/g" cl2.in > tmp

foreach DIST ( 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 )

sed "s/NEW/${DIST}/g" tmp > cl2_${DIST}.in

end
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If we create this script using copy/paste in a vi window (say vi myscript.tcsh), then we can
simply issue tcsh myscript.tcsh in order to generate identical files which will differ only by the
Cl−Cl bond length:

$ ls cl2_*

cl2_2.2.in cl2_2.4.in cl2_2.6.in cl2_2.8.in cl2_3.0.in cl2_3.2.in

cl2_3.4.in cl2_3.6.in cl2_3.8.in cl2_4.0.in cl2_4.2.in cl2_4.4.in

cl2_4.6.in

At this point we can execute a batch job which will run pw.x for each of these input files. To this aim
we simply duplicate the call to the executable inside our job-1.pbs, and modify this call in order to
use the correct input file, eg:

mpirun -n 24 pw.x -npool 1 < cl2_2.2.in > cl2_2.2.out

mpirun -n 24 pw.x -npool 1 < cl2_2.4.in > cl2_2.4.out

...

...

mpirun -n 24 pw.x -npool 1 < cl2_4.4.in > cl2_4.4.out

mpirun -n 24 pw.x -npool 1 < cl2_4.6.in > cl2_4.6.out

After running these calculations we can look for the total energy as usual:

$ grep "\!" cl2_*.out

cl2_2.2.out:! total energy = -57.51390376 Ry

cl2_2.4.out:! total energy = -58.54440037 Ry

cl2_2.6.out:! total energy = -59.17256643 Ry

cl2_2.8.out:! total energy = -59.55021751 Ry

cl2_3.0.out:! total energy = -59.77201221 Ry

cl2_3.2.out:! total energy = -59.89671133 Ry

cl2_3.4.out:! total energy = -59.96077584 Ry

cl2_3.6.out:! total energy = -59.98691109 Ry

cl2_3.8.out:! total energy = -59.98945934 Ry

cl2_4.0.out:! total energy = -59.97764683 Ry

cl2_4.2.out:! total energy = -59.95749243 Ry

cl2_4.4.out:! total energy = -59.93293866 Ry

cl2_4.6.out:! total energy = -59.90658486 Ry

By extracting the bond length and the energy from this data we can obtain the plot shown below:
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In this plot the black dots are the calculated datapoints, and the blue line is a spline interpolation.
In gnuplot this interpolation is obtained using the flag ’smooth csplines’ at the end of the plot

command.

By zooming in the figure we find that the bond length at the minimum is 3.725 bohr = 1.97 Å. This
value is 1.5% below the measured bond length of 1.99 Å.

Binding energy of a diatomic molecule

The total energy of Cl2 at the equilibrium bond length can be used to calculate the dissociation
energy of this molecule.

The dissociation energy is defined as the difference Ediss = ECl2 − 2ECl, with ECl the total energy
of an isolated Cl atom.

In order to evaluate this quantity we first calculate ECl2 using the equilibrium bond length determined
in the previous section. For this we modify the input file cl2.in as follows:

...

ATOMIC_POSITIONS bohr

Cl 0.00 0.00 0.00

Cl 3.725 0.00 0.00

...

A calculation with this modified input file yields the total energy

ECl2 = -59.99059545 Ry

Now we consider the isolated Cl atom.
The only complication in this case is that the outermost (3p) electronic shell of Cl has one unpaired

electron: ↑↓ ↑↓ ↑ . In order to take this into account we can perform a spin-polarized calculation
using the following modification of the previous input file:

&control

calculation = 'scf'

prefix = 'Cl2',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 1,

celldm(1) = 20.0,

nat = 1,

ntyp = 1,

ecutwfc = 100,

nspin = 2,

tot_magnetization = 1.0,

occupations = 'smearing',

degauss = 0.001,

/

&electrons

conv_thr = 1.0d-8

/
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ATOMIC_SPECIES

Cl 1.0 Cl.pz-bhs.UPF

ATOMIC_POSITIONS

Cl 0.00 0.00 0.00

K_POINTS gamma

After running pw.x with this input file, we obtain a total energy

ECl = -29.86386108 Ry

By combining the last two results we find

Ediss = 0.262873 Ry = 3.58 eV

This result should be compared to the experimental value of 2.51 eV from https://en.wikipedia.

org/wiki/Bond-dissociation_energy. We can see that DFT/LDA overestimates the dissociation
energy of Cl2 by about 1 eV: interatomic bonding is slightly too strong in LDA.

Equilibrium structure of a bulk crystal

In this section we study the equilibrium structure of a bulk crystal. We consider again a silicon crystal,
since we already studied the convergence parameters in Tutorial 1.2.
We can make a new directory, eg

cd ~/scratch/summerschool/tutorial-2.1 ; mkdir silicon

cd silicon

and copy the executable, the submission script, the pseudopotential, and the input file from the folder
tutorial-1.2. In this case the input file with the converged parameters for planewaves cutoff and
Brillouin-zone sampling is:

$ more si.in

&control

calculation = 'scf'

prefix = 'silicon',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 2,

celldm(1) = 10.28,

nat = 2,

ntyp = 1,

ecutwfc = 25.0,

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Si 28.086 Si.pz-vbc.UPF

ATOMIC_POSITIONS

Si 0.00 0.00 0.00

Si 0.25 0.25 0.25

K_POINTS automatic

4 4 4 1 1 1
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The key observation in the case of bulk crystals is that often we already have information about
the structure from XRD measurements. This information simplifies drastically the calculation of the
equilibrium structure.
For example, in the case of silicon, the diamond structure is uniquely determined by the lattice pa-
rameter, therefore the energy minimization is a one-dimensional optimization problem, precisely as in
the case of the Cl2 molecule.
In Tutorial 2.2 we will explore the more complicated situation where we want to decide which one
among several possible crystal structures is the most stable.

To find the equilibrium lattice parameter of silicon we perform total energy calculations for a series of
plausible parameters. We can generate multiple input files at once by using the following script (we can
copy/paste this in a vi window: vi myscript.tcsh and then execute using tcsh myscript.tcsh):

sed "s/10.28/NEW/g" si.in > tmp

foreach ALAT ( 10.0 10.1 10.2 10.3 10.4 10.5 10.6 )

sed "s/NEW/${ALAT}/g" tmp > si_${ALAT}.in

end

Now we can execute pw.x using the generated input files. Once again we can enter all the instances
of execution in the same submission script, eg:

mpirun -n 12 pw.x -npool 4 < si_10.0.in > si_10.0.out

...

...

mpirun -n 12 pw.x -npool 4 < si_10.6.in > si_10.6.out

After running the batch job on the cluster, we should be able to see the output files si 10.0.out,
· · ·, si 10.6.out, and extract the total energies as follows:

$ grep "\!" si_*.out

si_10.0.out:! total energy = -15.84770898 Ry

si_10.1.out:! total energy = -15.85028964 Ry

si_10.2.out:! total energy = -15.85121715 Ry

si_10.3.out:! total energy = -15.85065982 Ry

si_10.4.out:! total energy = -15.84873489 Ry

si_10.5.out:! total energy = -15.84558108 Ry

si_10.6.out:! total energy = -15.84131402 Ry

A plot of the total energy vs. lattice parameter is shown below:
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Also in this case the black dots are the calculated datapoints, and the red line is a smooth interpo-
lating function (obtained using ‘smooth csplines’ in gnuplot).

By zooming near the bottom we see that the equilibrium lattice parameter is a = 10.2094 bohr
= 5.403 Å. This calculated value is very close to the measured equilibrium parameter of 5.43 Å;
DFT/LDA underestimates the measured value by 0.5%.

Cohesive energy of a bulk crystal

The cohesive energy is defined as the heat of sublimation of a solid into its elements.

In practice the calculation is identical to the case of the dissociation energy of the Cl2 molecule: we
need to take the difference between the total energy at the equilibrium lattice parameter and the total
energy of each atom in isolation.

For the energy at equilibrium we just repeat one calculation using the same input files as above, this
time by setting

...

celldm(1) = 10.2094,

...

This calculation yields:

Ebulk = -15.85122170 Ry

(this value is an energy per unit cell, and each unit cell contains 2 Si atoms)

For the isolated atom we need to consider one atom per cell, and spin-polarization as in the case of
Cl. In fact the outer valence shell of silicon is 2p: ↑ ↑ .

We can modify the input file as follows (this is very similar to what we have done for the Cl atom,
but this time the total spin is 2 Bohr magnetons)

&control

calculation = 'scf'

prefix = 'silicon',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 1,

celldm(1) = 20,

nat = 1,

ntyp = 1,

ecutwfc = 25.0,

nspin = 2,

tot_magnetization = 2.0,

occupations = 'smearing',

degauss = 0.001,

/

&electrons

conv_thr = 1.0d-8

/
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ATOMIC_SPECIES

Si 28.086 Si.pz-vbc.UPF

ATOMIC_POSITIONS

Si 0.00 0.00 0.00

K_POINTS gamma

The calculation for the isolated atom gives:

ESi = -7.53189352 Ry

By combining the last two results we obtain:

Ecohes = Ebulk/2− ESi = 0.393717 Ry = 5.36 eV

The measured heat of sublimation of silicon is 4.62 eV (see pag. 71 of the Book), therefore DFT/LDA
overestimates the experimental value by 16%.
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. An introduction to density functional theory for experimentalists

Tutorial 2.2

Hands-on session

We create a new folder as usual:

$ cd ~/scratch/summerschool; mkdir tutorial-2.2 ; cd tutorial-2.2

In this hands-on session we will study the equilibrium structure of simple crystals, namely silicon (as
in Tutorial 2.1), diamond, and graphite.

Exercise 1

I Familiarize yourself with the steps of Tutorial 2.1, in particular:

1 Calculate the equilibrium lattice parameter of silicon

2 Calculate the cohesive energy of silicon

Exercise 2

In this exercise we will study the equilibrium structure of diamond.

The crystal structure of diamond is almost identical to the one that we used for silicon in Exercise 1.
The two important differences are (i) this time we need a pseudopotential for diamond, and (ii) we
expect the equilibrium lattice parameter to be considerably smaller than in silicon.

IAfter creating a new directory for this exercise, find a suitable pseudopotential for diamond. It is
recommended to use the pseudopotential C.pz-vbc.UPF.
The link to the pseudopotential library can be found in the PDF document of Tutorial 1.1.

IDownload this pseudpotential, copy over all the necessary files from tutorial-2.1, and perform
a test run to make sure that everything goes smoothly.
For this test run it is sensible to use the experimental lattice parameter of diamond, 3.56 Å.

IDetermine the planewaves kinetic energy cutoff ecutwfc required for this pseudopotential.
You can generate the input files for various cutoff energies either manually, or by using the script on pag. 3 of

Tutorial 1.2.

You should find that the total energy per atom is converged to within 10 meV when using a cutoff
ecutwfc = 100 Ry.

IDetermine the equilibrium lattice parameter of diamond, by performing calculations similar to those
for silicon in Exercise 1.
Compare the calculated lattice parameter with the experimental value.

You should find an equilibrium lattice parameter of 6.66405 bohr = 3.5264 Å.
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IUsing the equilibrium lattice parameter determined in the previous exercise, calculate the cohesive
energy of diamond and compare your value with experiments.
For this calculation you can use the same strategy employed in Tutorial 2.1 for the cohesive energy of Si. Note

that the C atom in its ground state has a valence electronic configuration 2s ↑↓ 2p ↑ ↑

As a reference, the cohesive energy that calculated using these settings should be around 9.08 eV
(the experimental value is 7.37 eV).

IPlot the cohesive energy vs. volume/atom for all the lattice parameters that you considered.

The plot should look like the following.

Exercise 3

In this exercise we study the equilibrium structure of graphite. A search for carbon allotropes in the
Inorganic Crystal Structure Database (ICSD) yields the following structural information:

From the data in this page we know that the unit cell of graphite is hexagonal, with lattice vectors

a1 = a ( 1 0 0 )

a2 = a ( −1/2
√
3/2 0 )

a3 = a ( 0 0 c/a )

(a =2.464 Å and c/a = 2.724), and with 4 C atoms per primitive unit cell, with fractional coordinates:
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C1 : ( 0 0 1/4 )
C2 : ( 0 0 3/4 )
C3 : ( 1/3 2/3 1/4 )
C4 : ( 2/3 1/3 3/4 )

I Starting from the input file that you used for diamond in Exercise 2, build an input file for calcu-
lating the total energy of graphite, using the experimental crystal structure given above.

Here you will need to pay attention to the entries ibrav and celldm() in the input. Search for these
entries in the documentation page:
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

Here you should find the following:

Based on this information we must use ibrav = 4 and celldm(1) and celldm(3).

As a sanity check, if you run a calculation with ecutwfc = 100 and K POINTS gamma you should
obtain a total energy of -44.581847 Ry.

IA convergence test with respect to the number of k-points indicates that the total energy is con-
verged to 4 meV/atom when using a shifted 6×6×2 grid (6 6 2 1 1 1 with K POINTS automatic).
Using this setup for the Brillouin-zone sampling, calculate the lattice parameters of graphite a and c/a
at equilibrium. Note that this will require a minimization of the total energy in a two-dimensional
parameter space.

For this calculation it is convenient to automatically generate input files as follows, assuming that your input
file is called graph.in:

• Replace the values of celldm(1) and celldm(3) by the placeholders ALAT and RATIO, respectively;

• Create a script myscript.tcsh with the following content:
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rm tmp.pbs

foreach A ( 4.4 4.5 4.6 4.7 4.8 4.9 5.0 )

foreach CA ( 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 )

sed "s/ALAT/${A}/g" graph.in > tmp

sed "s/RATIO/${CA}/g" tmp > graph_${A}_${CA}.in

echo "mpirun -n 12 pw.x -npool 12 < graph_${A}_${CA}.in > graph_${A}_${CA}.out" >> tmp.pbs

end

end

• By running tcsh myscript.tcsh you will be able to generate input files for all these combinations of
a and c/a.
The file tmp.pbs will contain all the correct execution commands, that you can copy/paste directly
inside your submission script.

• Note that this will produce 7 × 9 = 63 input files, but the total execution time on 12 cores should be
around 1 min.

• At the end you will be able to extract the total energies by using grep as usual

grep "\!" graph_*_*.out > mydata.txt

If you plot the total energies that you obtained as a function of a and c/a you should be able to get
something like the following:

This plot was generated using the following commands in gnuplot (the file mydata.txt must first
be cleaned up in order to obtain only three columns with the values of a, c/a, and energy):

set dgrid3d splines 100,100

set pm3d map

splot [] [] [:-45.599] "mydata.txt"

The ‘splines’ keyword provides a smooth interpolation between our discrete set of datapoints. The
plotting range along the energy axis is restricted in order to highlight the location of the energy
minimum.
Here we see that the energy minimum is very shallow along the direction of the c/a ratio, while it is
very deep along the direction of the lattice parameter a. This corresponds to the intuitive notion that
the bonding in graphite is very strong within the carbon planes, and very weak in between planes.
By zooming in a plot like the one above you should be able to find the following equilibrium lattice
parameters:
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a = 2.439 Å, c/a = 2.729

From these calculations we can see that the agreement between DFT/LDA and experiments for the
structure of graphite is excellent. This result is somewhat an artifact: most DFT functionals cannot
correctly predict the interlayer binding in graphite due to the lack of van der Waals corrections. Since
LDA generally tends to overbind (as we have seen in all examples studied so far), but it does not con-
tain van der Waals corrections, this functional works well for graphite owing to a cancellation of errors.

For future reference let us just note that the total energy calculated using these optimized lattice
parameters is −45.60104552 Ry.

Exercise 4

In this excercise we want to see how the structure of graphite that we are using in our input file looks
like in a ball-and-stick model.

The software xcryden can import QE input files and visualize the atomistic structures. General info
about this project can be found at http://www.xcrysden.org.

We launch xcryden by typing:

$ xcrysden

The user interface is very simple and intuitive. The following snapshots may be helpful to get started
with the visualization.
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Exercise 5

IWhich carbon allotrope is more stable at ambient conditions, diamond or graphite?

Note: The answer to this question is rather delicate. In nature graphite is more stable than diamond
by 40 meV/atom at ambient pressure and low temperature.
Using the calculations of Exercises 2 and 3 we find that the cohesive energy of diamond is 8 meV
lower than in graphite. Therefore DFT/LDA would predict diamond to be more stable, contary to
experiments. This is in agreement with the following stuy by Janotti et al, http://dx.doi.org/
10.1103/PhysRevB.64.174107.

25-29 July 2016 F. Giustino Tutorial 2.2 | 6 of 6

http://dx.doi.org/10.1103/PhysRevB.64.174107
http://dx.doi.org/10.1103/PhysRevB.64.174107


Un
iv
er
si
ty

of
Ox
fo
rd

Pr
of
.

Fe
li
ci
an
o
Gi
us
ti
no

PA
RA
DI
M
Sc
ho
ol

· C
or
ne
ll
,
Ju
ly

20
16

. An introduction to density functional theory for experimentalists

Tutorial 3.1

We begin with a new folder as usual:

$ cd ~/scratch/summerschool ; mkdir tutorial-3.1 ; cd tutorial-3.1

In the first part of this tutorial we will say more on the determination of equilibrium structures of
molecules and solids. In the second part we will attempt a calculation of elastic properties.

Automatic optimization of atomic coordinates

In Tutorial 2.1 we discussed how to calculate the potential energy surface of a molecule, and how to
determine equilibrium structures by locating the minima of that surface.

In this section we consider an alternative route for finding the equilibrium geometry of Cl2.

As a starter we copy over the input files that we used for the exercise on Cl2 during Tutorial 2.1:

$ cp ../tutorial-2.1/cl2.in ./

$ cp ../tutorial-2.1/pw.x ./

$ cp ../tutorial-2.1/job.pbs ./

We check that everything is in place and that job.pbs is still reading in correctly cl2.in (in case
this was modified during Tutorial 2.1). As usual we perform a test run in order to make sure that
everything goes smoothly:

$ qsub job.pbs

For this job we must remember to use the submission flag -npool 1, otherwise the code will crash
(can you explain why?). If everything is still fine, we should find cl2.out in the current folder,
indicating that the run completed successfully.

Now let us take a look at the documentation of pw.x. As a reminder we need to go to:
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

We look for the input variable calculation; we should find the following:
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Until now we have used only one type of calculation, namely calculation = 'scf'. This means
that we required the code to perform only a self-consistent DFT calculation with the ions clamped
at the coordinates specified below the keyword ATOMIC_POSITIONS.

Another possibility is to set this variable to ‘relax’ inside cl2.in:

&control

calculation = 'relax'

prefix = 'Cl2',

...

This choice instructs pw.x to automatically determine the equilibrium structure, starting from the
coordinates given below the keyword ATOMIC_POSITIONS. In practice the code calculates the forces
acting on the ions, and updates the ionic positions in such a way as to minimize those forces. The
equilibrium configuration will correspond to the situation where all forces are smaller than a certain
threshold, and the total potential energy surface has changed less than a given threshold from the
previous iteration.

The threshold on the forces is given by the variable forc_conv_thr:

The threshold on the total potential energy is specified by the variable etot_conv_thr:

In principle we could perform calculations without specifying these parameters; in this case pw.x will
use some preset default values. For the sake of completeness let us specify some rather stringent
criterion in the input file cl2.in:

&control

calculation = 'relax'

prefix = 'Cl2',

forc_conv_thr = 1.d-5,

etot_conv_thr = 1.d-8,

...

When we perform the automatic optimization of the atomic coordinates we also need to add a ‘card’
for the ions, as follows:
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...

&electrons

conv_thr = 1.0d-8

/

&ions

/

ATOMIC_SPECIES

..

This extra card is to specify runtime parameters, but we can leave it empty for the time being.

As a starting point for the atomic coordinates let us use a very large Cl-Cl separation:

...

ATOMIC_POSITIONS bohr

Cl 0.00 0.00 0.00

Cl 5.00 0.00 0.00

...

We now execute pw.x and look at the output file cl2.out directly using . As a reminder, in order to
search for a word in vi we simply press / and type the word. We search for ‘Forces’ and obtain:

Forces acting on atoms (Ry/au):

atom 1 type 1 force = 0.12392756 0.00000000 0.00000000

atom 2 type 1 force = -0.12392756 0.00000000 0.00000000

Total force = 0.175260 Total SCF correction = 0.000022

These lines are telling us that, in the initial configuration, the two Cl atoms experience forces directed
along the Cl-Cl axis, and pointing towards the other Cl atom. This was to be expected since we
started with the atoms at a distance much larger than the equilibrium bond length.

Immediately below the forces we see the updated atomic positions which will be used at the next
iteration:

ATOMIC_POSITIONS (bohr)

Cl 0.123927558 0.000000000 0.000000000

Cl 4.876072442 0.000000000 0.000000000

Clearly the atoms are being displaced towards each other. At the end of the iterations we can see
something like the following:

Forces acting on atoms (Ry/au):

atom 1 type 1 force = 0.00000147 0.00000000 0.00000000

atom 2 type 1 force = -0.00000147 0.00000000 0.00000000

Total force = 0.000002 Total SCF correction = 0.000024

...

Final energy = -59.9905957153 Ry

Begin final coordinates
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ATOMIC_POSITIONS (bohr)

Cl 0.637701785 0.000000000 0.000000000

Cl 4.362298215 0.000000000 0.000000000

End final coordinates

Here we see that the forces are essentially vanishing, therefore we reached the equilibrium configura-
tion. The total energy at equilibrium is -59.9905957153 Ry, and the bond length is 3.7246 bohr =
1.971 Å. These values are in agreement with what we had found in Tutorial 2.1 (pag. 4) by explicitly
looking for the minimum of the potential energy surface.

If we want to see how the atomic coordinates evolved towards the equilibrium configuration, we can
simply issue:

$ grep "Cl" cl2.out

There is also a way to directly visualize the evolution of the atomic coordinates: we can open
xcrysden and go through the following steps:
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Automatic optimization of atomic coordinates and unit cell

In addition to the optimization of atomic coordinates, it is also possible to optimize the vectors of
the primitive unit cell. This feature is activated in pw.x by setting the calculation type to vc-relax:

Let us consider the case of graphite as in Tutorial 2.2. We can copy over the corresponding input
file and the carbon pseudopotential:

$ cp ../tutorial-2.2/exercise3/graph.in ./

$ cp ../tutorial-2.2/exercise3/C.pz-vbc.UPF ./

Let us modify the input file is such a way as to start from a highly-compressed unit cell of graphite:

&control

calculation = 'vc-relax'

prefix = 'graphite',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 4,

celldm(1) = 4.0,

celldm(3) = 2.0,

nat = 4,

ntyp = 1,

ecutwfc = 100,

/

&electrons

conv_thr = 1.0d-8

/

&ions

/

&cell

/

ATOMIC_SPECIES

C 1.0 C.pz-vbc.UPF

ATOMIC_POSITIONS crystal

C 0.00 0.00 0.25

C 0.00 0.00 0.75

C 0.333333 0.666666 0.25

C 0.666666 0.333333 0.75

K_POINTS automatic

6 6 2 1 1 1
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In the above input file we should note the ‘cards’ ions and cell which are required when running
this kind of calculation. In this file the cards are left empty; generally they can be used to fine-tune
the optimization procedure.

When instructred to execute a calculation of type vc-relax, pw.x evaluates the stress tensor of the
system in the initial configuration, and updates the unit cell vectors so as to reduce the stress.

Let us execute pw.x using the above input file. At the end of the run we can look inside the output
file using vi and search for the following words:

/ subroutine stress

We will see something like:

entering subroutine stress ...

total stress (Ry/bohr**3) (kbar) P= 4044.22

0.03445761 0.00000000 0.00000000 5068.89 0.00 0.00

0.00000000 0.03445761 0.00000000 0.00 5068.89 0.00

0.00000000 0.00000000 0.01356098 0.00 0.00 1994.89

This indicates that, as expected, in the first iteration the system is under a very high pressure, pre-
cisely 4.04 Mbar. Following this initial iteration, pw.x modifies the lattice vectors in the direction of
lower pressure.

We can note that in this case the individual forces on the atoms are all vanishing by symmetry:

Forces acting on atoms (Ry/au):

atom 1 type 1 force = 0.00000000 0.00000000 0.00000000

atom 2 type 1 force = 0.00000000 0.00000000 0.00000000

atom 3 type 1 force = 0.00000000 0.00000000 0.00000000

atom 4 type 1 force = 0.00000000 0.00000000 0.00000000

As a result this procedure will not modify the Wickoff positions of the 4 C atoms in the unit cell.
The final optimized structure is found by looking for

/ Begin final coordinates

Begin final coordinates

new unit-cell volume = 200.62641 a.u.^3 ( 29.72977 Ang^3 )

CELL_PARAMETERS (alat= 4.00000000)

1.149452048 0.000000000 0.000000000

-0.574726024 0.995454674 0.000000000

0.000000000 0.000000000 2.739654388

ATOMIC_POSITIONS (crystal)

C 0.000000000 0.000000000 0.250000000

C 0.000000000 0.000000000 0.750000000

C 0.333333000 0.666666000 0.250000000

C 0.666666000 0.333333000 0.750000000

End final coordinates

25-29 July 2016 F. Giustino Tutorial 3.1 | 6 of 10



Un
iv
er
si
ty

of
Ox
fo
rd

Pr
of
.

Fe
li
ci
an
o
Gi
us
ti
no

PA
RA
DI
M
Sc
ho
ol

· C
or
ne
ll
,
Ju
ly

20
16

In this output file we should note that the lattice vectors are given in units of the original lattice
parameter in input, that is alat = 4.0 bohr. Therefore the optimized lattice parameter is now

a = 4.00000000 · 1.149452048 = 4.59781 bohr = 2.433 Å

The optimized c/a ratio is

c/a = 2.739654388/1.149452048 = 2.383.

It is immediate to see that the lattice vectors correspond to an hexagonal lattice; for example the
second line of CELL_PARAMETERS is a(−1/2,

√
3/2, 0).

The total energy in the optimized configuration is -45.59332176 Ry.

Note. From this calculation we have obtained a c/a ratio which is much smaller than the one
determined in Tutorial 2.2 by studying the potential energy surface (2.383 here vs. 2.729 in T2.2).
The interlayer separation is approximately 15% shorter in the present calculation.
This result is a calculation artifact. What is happening is that the code modifies the structure so
as to minimize the energy. Now, the Hamiltonian describing the system is expressed in a basis of
planewaves, and the wavevectors of these planewaves alond the c axis are multiples of 2π/c. If,
during the optimization, the c parameter undergoes a significant change (as it is the case here,
since we start from c/a = 2 and we end up with c/a = 2.729), then we are effectively reducing our
planewaves cutoff at each iteration. As a result the calculation becomes less and less accurate. In
order to avoid this problem, pw.x performs one additional calculation at the very end, after having
redefined all the G-vectors according to the optimized structure. We can see that this step yields
a residual pressure of 92.7 kbar along the c-axis. This indicates that the structure is not yet fully
optimized. In order to avoid this problem we should run a new calculation, starting from the latest
lattice parameters.

Elastic constants of diamond

Now we want study the elastic constants of diamond. As we have seen in Lecture 3.2, for a cubic
system like diamond there are only three independent elastic constants, namely C11, C12, and C44.

We can determine these constants by using the relations discussed in the lecture. In particular:

• We consider an isotropic deformation of the diamond structure. This corresponds to a uniform
stretch of the lattice vectors:

a′i = (1 + η)ai for i = 1, 2, 3

The resulting change in the total potential energy from the equilibrium value U0 is:

U − U0 = Ω
3

2
(C11 + 2C12) η

2 (1)

The calculation of U and U0 can be performed by using the following input file for diamond
(taken from Tutorial 2.2, Exercise 2):
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$ cat > scf.in << EOF

&control

calculation = 'scf'

prefix = 'diamond',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 0,

celldm(1) = 6.66405,

nat = 2,

ntyp = 1,

ecutwfc = 100.0,

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

C 1.0 C.pz-vbc.UPF

ATOMIC_POSITIONS

C 0.00 0.00 0.00

C 0.25 0.25 0.25

K_POINTS automatic

6 6 6 1 1 1

CELL_PARAMETERS

-0.50 0.00 0.50

0.00 0.50 0.50

-0.50 0.50 0.00

EOF

In this version of the input file we are specifying that the unit cell vectors are given manually,
ibrav = 0; these vectors are provided in units of the lattice parameter, celldm(1), after the
keywoord CELL_PARAMETERS.

By running pw.x with the above input file we obtain the total energy in the ground state:

U0 = -22.80164823 Ry.

Furthermore we can read the volume of the unit cell by searching for: / volume

This gives Ω = 73.9869 bohr3.

Now we can modify this input file in order to set in an isotropic deformation with η = 0.002:

$ more scf_iso.in

...

CELL_PARAMETERS

-0.501 0.000 0.501

0.000 0.501 0.501

-0.501 0.501 0.000

...
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With this new input file we find the total energy:

U = -22.80159963 Ry

Using Eq. (1) with η = 0.002 we obtain

C11 + 2C12 = 0.10948 Ry/bohr3 = 1610.5 GPa 1 Ry/bohr3 = 14710.5 GPa

• We now consider a tetragonal deformation.

From Lecture 3.2 we have the relation:

U − U0 = Ω 3 (C11 − C12) η
2 (2)

and the tetragonal distortion of the unit cell can be realized by considering an expansion (1+η)
along x and y, and a contraction (1− 2η) along z. We modify the input file as follows:

$ more scf_tetra.in

...

CELL_PARAMETERS

-0.501 0.000 0.498

0.000 0.501 0.498

-0.501 0.501 0.000

...

This calculation gives:

U =-22.80156418 Ry

Using Eq. (2) with η = 0.002 we obtain

C11 − C12 =0.094668 Ry/bohr3 = 1392.6 GPa

By combining the two relations for C12 and C12 we obtain:

C11 = 1465.6 GPa, C12 = 72.6 GPa.

The corresponding experimental values are C11 = 1079 GPa, C12 = 124 GPa, from McSkimin
& Andreatch, J. Appl. Phys. 43, 2944 (1972).

Note. These calculations are not fully converged, and by refining our setup we can obtain
better agreement with experiment. In particular, we are determining elastic constants using
only 2 calculations in each case. Since elastic constants are second derivatives of the total
energy, a much more acurate approach is to evaluate such derivatives using 3 total energy
calculations. See Exercise 6.4 of the Book for how to perform more refined calculations.
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• Finally we can consider a trigonal deformation.

From Lecture 3.2 we have the relation:

U − U0 = Ω
1

2
C44 η

2 (3)

and the trigonal distortion of the unit cell can be realized by considering the following distortion
for η = 0.002:

$ more scf_trigo.in

...

CELL_PARAMETERS

-0.5000 -0.0005 0.5000

0.0005 0.5000 0.5000

-0.4995 0.4995 0.0000

...

This calculation gives:

U =-22.80164338 Ry

Using Eq. (3) with η = 0.002 we obtain

C44 = 0.0327761 Ry/bohr3 = 482.2 GPa

The corresponding experimental value is C44 = 578 GPa [McSkimin & Andreatch,J. Appl.
Phys. 43,2944 (1972)].

Note. These calculations are not fully converged: in order to obtain accurate results we need
to use higher-order finite difference formulas. See Exercise 6.4 of the Book.
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. An introduction to density functional theory for experimentalists

Tutorial 3.2

Hands-on session

We create a new folder as usual:

$ cd ~/scratch/summerschool; mkdir tutorial-3.2 ; cd tutorial-3.2

In this hands-on session we will first familiarize ourselves with calculations of elastic constants, using
diamond as a test case. Then we will try to set up an entirely new calculation on SrTiO3; here we
will use the Materials Project database to find the initial geometry.

Exercise 1

ICalculate the elastic constants C11, C12, and C44 of diamond, by following the steps illustrated in
Tutorial 3.1.

The bulk modulus B is a measure of the resistance of a materials to hydrostatic compression. This
quantity can be obtained from the elastic constants as:

B =
1

3
(C11 + 2C12).

ICalculate the bulk modulus of diamond, using the data obtained in the previous step, and compare
your result with experiment.

I In Tutorial 3.1 we used a ‘deformation’ parameter η = 0.002 in all our calculations.
Investigate the sensitivity of the calculated bulk modulus of diamond to the choice of η, by repeating
the calculations for η = 0.1, 0.01, and 0.001.

Exercise 2

In this exercise we want to set up a simple input file to study SrTiO3. In order to find an initial guess
for the unit cell and atomic coordinates, we search the Materials Project database.

If you do not already have an account on the Materials Project, please go to https://www.

materialsproject.org and click on Sign in or Register. The registration process only requires
an email address and a password, this should take less than a minute to complete.

After logging-in you should be able to see a periodic table like the following:
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Now we can search for SrTiO3 by entering Sr, Ti, and O in the search bar:

We are looking for the Pm3m structure of SrTiO3, which is the high-temperature cubic phase. We
will study the cubic phase since it only contains 5 atoms, therefore calculations are relatively easy.

By clicking on the Pm3m field we are shown the properties of this structures that have been uploaded
in the database:
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All we need from this page is the structural data, which can be found in the poscar file:

The ‘poscar’ format is the standard format of VASP, another widely used DFT package.

The ‘poscar’ file thus downloaded should look like the following:

1 Sr1 Ti1 O3

2 1.0

3 3.945130 0.000000 0.000000

4 0.000000 3.945130 0.000000

5 0.000000 0.000000 3.945130

6 Sr Ti O

7 1 1 3

8 direct

9 0.000000 0.000000 0.000000 Sr

10 0.500000 0.500000 0.500000 Ti

11 0.500000 0.000000 0.500000 O

12 0.500000 0.500000 0.000000 O

13 0.000000 0.500000 0.500000 O

Here the first line is a comment field, the second line contains the lattice parameter a in Å. Lines 3–5
contain the lattice vectors, scaled by the lattice parameter a: a1/a, a2/a, a3/a (note that in this
example the authors decided to set a = 1 and to give the lattice vectors directly in Å). Line 6
contains the list of atoms in the unit cell, followed by the number of atoms of each type on line 7,
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in the same order. The keyword ‘direct’ on line 8 states that the atomic coordinates in lines 9-13
are expressed as fractional coordinates (units of ‘direct’ lattice), eg the Ti atom is at (a1+a2+a3)/2.

IConstruct the input file for a total energy calculation of SrTiO3 using pw.x. For the time being
we can leave the pseudopotential field blank. It is absolutely fine to start from an input file that you
have from previous exercises.
If anything is unclear, please consult the documentation at
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

Note: Remember that celldm(1) is to be given in atomic units. In order to specify that the atomic positions

are in crystal coordinates we use the keyword: ATOMIC_POSITIONS crystal.

At this point we need pseudopotentials for Sr, Ti, O. For this exercise we want to use the LDA
exchange and correlation functional, therefore we need to identify LDA pseudopotentials. We are
looking for pseudos with the label pz (Perdew-Zunger) in the filename.
In order to make sure that we all obtain the same results, let us decide that we consider only pseu-
dopotentials generated by Hartwigsen, Goedeker & Hutter.

IDownload the required pseudopotential files from the QE library, using wget as in Tutorial 1.1.

IUsing the input file just created, say scf.in, perform a test run using calculation = 'scf' in
order to make sure that everything goes smoothly. For this test we can use some arbitrary convergence
parameters, say ecutwfc = 40 and a Brillouin-zone sampling 4 4 4 1 1 1.

Exercise 3

Now that we have a basic setup for SrTiO3, we need to perform convergence tests.
IDetermine the planewaves kinetic energy cutoff which is required to have the total energy converged
to within 50 meV/atom. For this calculation you can use the same K_POINTS set of Exercise 2.
As a reminder, we performed a similar operation in Tutorial 1.2/Exercise 2.

IUsing the cutoff just obtanied, determine the sampling of the Brillouin zone required to have the
total energy converged to within 10 meV/atom.
You can find an example of such a test in Tutorial 1.2/Exercise 3.

Exercise 4

IUsing the convergence parameters obtained in Exercise 3, determine the optimized lattice param-
eter of SrTiO3 by using a calculation of type vc-relax (see Tutorial 3.1 for an example).

In this calculation you will note that the residual pressure at the end of the run is still nonzero. In
order to fully optimize the lattice parameter it is convenient to perform one or two additional runs
using the optimized parameter as a starting point.

ICompare your optimized lattice parameter with the experimental value from Cao et al, PSSA 181,
387 (2000).
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Exercise 5

As a sanity check, at the end of Exercise 3 and 4 we should have obtained the following parameters:

...

celldm(1) = 7.18899,

ecutfwc = 210,

...

K_POINTS

4 4 4 1 1 1

IUse these parameters to calculate the bulk modulus of cubic SrTiO3.

Note: In order to obtain reasonably accurate results it is convenient to use Eq. (1) of Tutorial 3.1,
after rewriting as follows:

B =
1

3
(C11 + 2C12) =

1

9

1

Ω

∂2U

∂η2
' 1

9

1

Ω

U(+η)− 2U(0) + U(−η)

η2

This expression shows that we can calculate the bulk modulus by using the second derivative of the
total energy with respect to the deformation parameter. The second derivative is then approximated
using a finite-difference formula involving 3 points (+η, 0, −η).

For your reference, using η = 0.01 and considering the unit cell volume Ω = 360.5033 bohr3, the
value B = 189 GPa is obtained.

I Following the same lines as in the last step, calculate the elastic constants C11 and C12 of cubic
SrTiO3.
Hint: We already have the bulk modulus, therefore we know C11 + 2C12 = 3B. What we still need
is the difference C11 − C12, as discussed in Tutorial 3.1.
Also in this case we can rewrite Eq. (2) of Tutorial 3.1 as:

C11 − C12 '
1

6

1

Ω

U(+η)− 2U(0) + U(−η)

η2

and we perform three calculations corresponding to a tetragonal deformation of the lattice.

As a reference, you should obtain values in the range of C11 = 360 GPa and C12 = 104 GPa.

ICompare your calculated constants B, C11, and C12 with the experimental values of Bell & Rup-
precht, Phys. Rev. 129, 90 (1963).
You should find that the deviation from experiment is smaller than 10%.

ICan you think of possible strategies to improve your results?
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. An introduction to density functional theory for experimentalists

Tutorial 4.1

We create a new folder:

$ cd ~/scratch/summerschool ; mkdir tutorial-4.1 ; cd tutorial-4.1

In this tutorial we will learn how to calculate the vibrational frequencies of molecules and solids,
phonon dispersion relations, LO-TO splitting, IR activity, and low-frequency dielectric constants.

Stretching frequency of a diatomic molecule

We start from the simplest possible system, the diatomic molecule Cl2 studied in Tutorial 2.1.

We copy the setup from T2.1:

$ cp ../tutorial-2.1/cl2.in ./

$ cp ../tutorial-2.1/Cl.pz-bhs.UPF ./

$ cp ../tutorial-2.1/pw.x ./

We now modify the input file in order to make sure that we are using the optimized geometry and
convergence parameters from Tutorial 2.1:

$ more cl2.in

&control

calculation = 'scf'

prefix = 'Cl2',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 1,

celldm(1) = 20.0,

nat = 2,

ntyp = 1,

ecutwfc = 100,

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Cl 1.0 Cl.pz-bhs.UPF

ATOMIC_POSITIONS bohr

Cl 0.000 0.00 0.00

Cl 3.725 0.00 0.00

K_POINTS gamma

As usual we perform a test run to make sure that everything goes smoothly. In this case it is important
to set -npool 1 in the call to pw.x.
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In Lecture 4.1 we have seen that the vibrational frequency of a diatomic molecule can be calculated
using:

ω =

√
2K

M
, K =

∂2U

∂d2

∣∣∣∣
d0

where M is the mass of the Cl nucleus, U is the total potential energy surface, d is the Cl-Cl distance,
and d0 is the equilibrium bond length.
By approximating the second derivative using finite differences we have:

~ω ' ~
√

2

M

U(d0 + δ)− 2U(d0) + U(d0 − δ)
δ2

where δ is a small number, say δ = 0.001 bohr.

We now calculate U(d0), U(d0 + δ), and U(d0 − δ) by creating two new input files where the
coordinates of the second Cl atom are modified.
We can do this as usual using vi. Alternatively we can use the following direct strategy:

$ sed "s/3.725/3.726/g" cl2.in > cl2_plus.in

$ sed "s/3.725/3.724/g" cl2.in > cl2_minus.in

It is convenient to extract the corresponding total energies from the output files on the fly. This can
be done as follows:

mpirun -np 12 pw.x -npool 1 < cl2_plus.in | grep "\!" > U_plus.txt

mpirun -np 12 pw.x -npool 1 < cl2_minus.in | grep "\!" > U_minus.txt

mpirun -np 12 pw.x -npool 1 < cl2.in | grep "\!" > U0.txt

In these expression the character | ‘pipes’ the output from the command on the left (pw.x) into the
input of the following command (grep "\!"). The result is then written (>) into the file on the right.

After completing our batch job on the cluster we should see the following:

$ more U*.txt

::::::::::::::

U0.txt

::::::::::::::

! total energy = -59.99059545 Ry

::::::::::::::

U_minus.txt

::::::::::::::

! total energy = -59.99059541 Ry

::::::::::::::

U_plus.txt

::::::::::::::

! total energy = -59.99059506 Ry

At this point we can combine our results, considering that the mass of Cl is 35.45 amu (1 amu =
1822.8885 me). We find:

~ω = 70.2 meV

to be compared to the experimental value of 66.7 meV.
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Stretching frequency of a diatomic molecule, using DFPT

The calculation method of the previous section is very general and widely used, however there exists
a faster alternative based on density-functional perturbation theory (DFPT).

In DFPT the vibrational frequency is calculated directly by working with the equilibrium structure,
using perturbation theory.

In the Quantum Espresso package DFPT for vibrations is implemented in a code named ph.x. In
order to use this code we need to go back to the root directory summerschool/espresso-5.4.0,
and execute:

$ make ph

$ cp bin/ph.x ../tutorial-4.1/

We can build a simple input file for Cl2 as follows:

$ cat > ph.in << EOF

vibrations of Cl2

&inputph

prefix = 'Cl2',

amass(1) = 35.45,

outdir = './',

fildyn = 'cl2.dyn',

/

0.0 0.0 0.0

EOF

Here the first line is just a comment field; the file ’cl2.dyn’ will contain the dynamical matrix. amass
is the atomic mass in amu (atomic mass units). The last line specifies that we want a calculation at
the Γ point, that is q = (0, 0, 0). This is appropriate since we are considering an isolated molecule.
Note that prefix must be the same as that used by pw.x.
In order to execute ph.x we first need to calculate the ground state properties of the system using
pw.x. In this case we must modify the input file cl2.in as follows:

$ more cl2.in

...

K_POINTS tpiba

1

0.0 0.0 0.0 1.0

With this modification pw.x is still instructed to calculate wavefunctions at Γ, that is k = 0. The
difference between this file and the previous version is that now we are instructing pw.x to treat
wavefunctions as complex quantities; in the previous version, the keyword gamma was instructing the
code to treat wavefunctions as real quantities.
The results do not change, but this modification is needed because ph.x only recognizes complex
wavefunctions.

We can now insert the following lines into our submission script, and run the job:
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mpirun -np 12 pw.x -npool 1 < cl2.in > cl2.out

mpirun -np 12 ph.x -npool 1 < ph.in > ph.out

After completion of this job we should find the file cl2.dyn in our working directory:

$ more cl2.dyn

Dynamical matrix file

1 2 1 20.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

1 'Cl ' 32310.698383589064

1 1 0.0000000000 0.0000000000 0.0000000000

2 1 0.1862500000 0.0000000000 0.0000000000

Dynamical Matrix in cartesian axes

q = ( 0.000000000 0.000000000 0.000000000 )

1 1

0.39656662 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000 0.00346652 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000 0.00000000 0.00000000 0.00346652 0.00000000

1 2

-0.42782957 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000 0.00482745 0.00000000 -0.00000000 0.00000000

0.00000000 0.00000000 -0.00000000 0.00000000 0.00482745 0.00000000

2 1

-0.42783017 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000 0.00482799 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000 0.00000000 0.00000000 0.00482799 0.00000000

2 2

0.39662970 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000 0.00352411 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000 0.00000000 0.00000000 0.00352411 0.00000000

Diagonalizing the dynamical matrix

q = ( 0.000000000 0.000000000 0.000000000 )

**************************************************************************

freq ( 1) = -3.234445 [THz] = -107.889470 [cm-1]

( -0.707133 -0.000000 -0.000003 -0.000000 -0.000055 -0.000000 )

( -0.707081 -0.000000 -0.000003 -0.000000 0.000028 -0.000000 )

freq ( 2) = -0.668245 [THz] = -22.290250 [cm-1]

( 0.000015 0.000000 -0.662456 0.000000 -0.253313 0.000000 )

( 0.000015 0.000000 0.658488 0.000000 0.251752 0.000000 )

freq ( 3) = -0.667934 [THz] = -22.279866 [cm-1]

( -0.000039 0.000000 -0.253258 0.000000 0.662427 0.000000 )

( -0.000039 0.000000 0.251807 0.000000 -0.658516 0.000000 )

freq ( 4) = 1.669664 [THz] = 55.694000 [cm-1]

( -0.000007 0.000000 0.656044 0.000000 0.258052 0.000000 )

( -0.000008 0.000000 0.659998 0.000000 0.259651 0.000000 )

freq ( 5) = 1.669785 [THz] = 55.698035 [cm-1]

( 0.000009 0.000000 0.258107 0.000000 -0.656073 0.000000 )

( 0.000013 0.000000 0.259596 0.000000 -0.659969 0.000000 )

freq ( 6) = 16.617980 [THz] = 554.316153 [cm-1]

( -0.707081 0.000000 0.000000 0.000000 0.000002 0.000000 )

( 0.707133 0.000000 -0.000000 0.000000 0.000002 0.000000 )

**************************************************************************

Here the blue lines represent the calculated dynamical matrix: we have 2 atoms and 3 Cartesian co-
ordinates, therefore the size of this matrix is 6×6. The blue lines correspond to precisely 36 numbers,
presented as pairs of real and imaginary part.
The numbers in red are the vibrational frequencies obtained by diagonalizing the dynamical matrix.
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Here we see that some frequencies are negative. This is only a convention, which is used to indicate
that the diagonalization of the dynamical matrix led to a uegative eigenvalue: ω2 < 0. In these cases
the code prints the quantity −

√
|ω2|, and the minus sign is just a flag to warn us that something is not

right. In other codes you may find the imaginary unit i in front of these frequencies, eg 107.889470 i.

In this example we were expecting to obtain ω = 0 for 5 modes (3 translations of Cl2 and 2 rotations),
and one high-frequency stretching mode. However, we should keep in mind that our Cl2 molecule
is in a periodic supercell, therefore a global rotation of all the molecules must involve some small
amount of energy. Furthermore, in these calculations space is not exactly ‘isotropic’, owing to our
finite planewaves cutoff. Together these two effect lead to nonzero frequencies in modes 1–5.

These artifacts can be corrected by imposing so-called acoustic sum rules. This procedure corresponds
to modifying the dynamical matrix in such a way as to make sure that the molecule will not experience
any restoring force when translated or rotated. We can perform this operation by calling a post-
processing program, dynmat.x:

$ cp ../espresso-5.4.0/bin/dynmat.x ./

$ cat > cl2.dynmat.in << EOF

&input

fildyn = 'cl2.dyn',

asr = 'zero-dim',

/

EOF

$ ./dynmat.x < cl2.dynmat.in

Here asr is a flag that instructs the code to impose the acoustic sum rule (a.s.r.). Note that we are
executing this small program in serial on the current node, without submitting a batch job.

This program will produce the following frequencies:

# mode [cm-1] [THz] IR

1 0.00 0.0000 0.0000

2 0.00 0.0000 0.0000

3 0.00 0.0000 0.0000

4 0.00 0.0000 0.0000

5 0.00 0.0000 0.0000

6 554.32 16.6180 0.0000

We see that now the system has only one nonzero vibrational frequency, as expected. The calculated
value 68.7 meV (1 meV = 8.0655 cm−1) is close to our result from the previous section, 65.1 meV.
The two values are not identical for two reasons: (1) The acoustic sum rule modifies the potential
energy surface, and (2) the present calculations correspond to taking the second derivative of U in
the limit δ → 0.

The documentation about the phonon code ph.x can be found at the following link:
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PH.html

An extensive set of examples on how to use ph.x is located inside the the directory:
espresso-5.4.0/PHonon/examples/
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Phonon dispersion relations of diamond

In this section we calculate the phonon dispersion relations of diamond. We begin by setting up the
usual input file for diamond, from Tutorial 2.2:

$ wget http://www.quantum-espresso.org/wp-content/uploads/upf_files/C.pz-vbc.UPF

$ cat > scf.in << EOF

&control

calculation = 'scf'

prefix = 'diamond',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 2,

celldm(1) = 6.66405,

nat = 2,

ntyp = 1,

ecutwfc = 100.0,

/

&electrons

conv_thr = 1.0d-12

/

ATOMIC_SPECIES

C 1.0 C.pz-vbc.UPF

ATOMIC_POSITIONS crystal

C 0.00 0.00 0.00

C 0.25 0.25 0.25

K_POINTS automatic

4 4 4 1 1 1

EOF

Here the lattice constant, the Brillouin-zone sampling, and the planewaves cutoff are set to the
same values that we obtained in Tutorial 2.2. We are now using a more stringent threshold for the
self-consistent cycle, conv_thr, since phonon calculations are quite sensitive to the accuracy of the
ground-state DFT calculation.

In order to calculate phonon frequencies along some high-symmetry paths in the Brillouin zone we
need to go through three separate steps:

1) Calculate the frequencies on a uniform grid of q-points;

2) Calculate the corresponding interatomic force constants in real space;

3) Calculate the frequencies along the chosen path of q-points, using a Fourier interpolation.
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The first step is performed using ph.x:

$ cat > ph.in << EOF

-

&inputph

prefix = 'diamond',

ldisp = .true.

amass(1) = 12.0107,

fildyn = 'dyn',

nq1 = 2,

nq2 = 2,

nq3 = 2,

tr2_ph = 1.0d-14,

/

EOF

Here the flag ldisp = .true. specifies that we are requesting a calculation on a uniform grid. The
size of this grid is specifieed by the variables nq1, nq2, and nq3. Standard grids are of the order of
4× 4× 4 to 8× 8× 8 points; here we use a modest 2× 2× 2 grid only to save time.

This calculation can be performed by using the following lines in our job submission script:

mpirun -np 12 pw.x -npool 4 < scf.in > scf.out

mpirun -np 12 ph.x -npool 4 < ph.in > ph.out

The second step is performed using a program called q2r.x. This is a small post-processing program
which is found in the directory ../espresso-5.4.0/bin. The input file is very simple, and we can
execute this program locally (ie without submitting to the queue):

$ cp ../espresso-5.4.0/bin/q2r.x ./

$ cat > q2r.in << EOF

&input

fildyn = 'dyn',

flfrc = 'diam.fc'

/

EOF

$ ./q2r.x < q2r.in

At the end of the execution the file diam.fc will contain the interatomic force constants.

For the third step we need a program called matdyn.x. This is also a small post-processing program
located in ../espresso-5.4.0/bin.

$ cp ../espresso-5.4.0/bin/matdyn.x ./

The input file is on the next page, and also this program can be executed locally:
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$ cat > matdyn.in << EOF

&input

asr = 'simple',

flfrc = 'diam.fc',

flfrq = 'diam.freq'

/

21

0.500 0.500 0.500

0.450 0.450 0.450

0.400 0.400 0.400

0.350 0.350 0.350

0.300 0.300 0.300

0.250 0.250 0.250

0.200 0.200 0.200

0.150 0.150 0.150

0.100 0.100 0.100

0.050 0.050 0.050

0.000 0.000 0.000

0.100 0.000 0.000

0.200 0.000 0.000

0.300 0.000 0.000

0.400 0.000 0.000

0.500 0.000 0.000

0.600 0.000 0.000

0.700 0.000 0.000

0.800 0.000 0.000

0.900 0.000 0.000

1.000 0.000 0.000

EOF

$ ./matdyn.x < matdyn.in

In this file we are specifying that we want the code to calculate vibrational frequencies for 21 q-
points. The Cartesian coordinates of these points are specified in units of 2π/a. In this example we
have 21 points uniformly distributed along the path L → Γ → X. L is (1/2, 1/2, 1/2)2π/a, X is
(1, 0, 0)2π/a, and Γ is (0, 0, 0).

The calculated frequencies can be found in the file diam.freq.gp. A plot of these data using
gnuplot gives the following phonon dispersion relations:
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LO-TO splitting, IR activity, and dielectric constant of GaAs

In this section we consider GaAs as an example of polar semiconductor. The atoms of polar semi-
conductors exhibit nonzero Born effective charges. The main consequences of nonzero Born charges
are: i) The vibrational frequencies of longitudinal and transverse optical phonons at long wavelength
(q→ 0) do not coincide. This is called LO-TO splitting. ii) The system exhibits infrared (IR) activity.
iii) The ionic vibrations provide an additional contribution to the dielectric constant at low frequency.

Let us create a basic input file for pw.x, for the case of GaAs:

$ wget http://www.quantum-espresso.org/wp-content/uploads/upf_files/Ga.pz-bhs.UPF

$ wget http://www.quantum-espresso.org/wp-content/uploads/upf_files/As.pz-bhs.UPF

cat > scf.in << EOF

&control

calculation = 'scf'

prefix = 'gaas',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 2,

celldm(1) = 10.4749,

nat = 2,

ntyp = 2,

ecutwfc = 40.0,

/

&electrons

/

ATOMIC_SPECIES

Ga 1.0 Ga.pz-bhs.UPF

As 1.0 As.pz-bhs.UPF

ATOMIC_POSITIONS crystal

Ga 0.00 0.00 0.00

As 0.25 0.25 0.25

K_POINTS automatic

6 6 6 1 1 1

EOF

All the parameters in this input file have been optimized separately. We can perform a test run to
make sure that everything is in place: as usual we call pw.x from within our submission script:

mpirun -np 12 pw.x -npool 12 < scf.in > scf.out

Now we calculate vibrational frequencies at q = 0. The input file for ph.x is similar to what we have
seen in the previous section. The only differences are the two additional flags epsil and zeu:

$ cat > ph.in << EOF

phonons of GaAs

&inputph

prefix = 'gaas',

amass(1) = 69.723,

amass(2) = 74.9216,

epsil = .true.,

zeu = .true.,

fildyn = 'dyn',

tr2_ph = 1.0d-14,

/

0.0 0.0 0.0

EOF
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If we visit the documentation page, http://www.quantum-espresso.org/wp-content/uploads/
Doc/INPUT_PH.html, and look for these flags we find:

Therefore these flags instruct ph.x to also evaluate the high-frequency (electronic) dielectric constant
tensor of the system, as well as the Born effective charges. As we have seen in Lecture 4.2, these
quantities are needed for calculating the IR activity of each mode and the static dielectric constant.

We execute ph.x using this input file from our batch script:

mpirun -np 12 ph.x -npool 12 < ph.in > ph.out

Towards the end of the output file we will find the following information:

Number of q in the star = 1

List of q in the star:

1 0.000000000 0.000000000 0.000000000

Dielectric constant in cartesian axis

( 11.559429679 0.000000000 0.000000000 )

( 0.000000000 11.559429679 0.000000000 )

( 0.000000000 0.000000000 11.559429679 )

Effective charges (d Force / dE) in cartesian axis

atom 1 Ga

Ex ( 2.03189 0.00000 0.00000 )

Ey ( 0.00000 2.03189 0.00000 )

Ez ( 0.00000 0.00000 2.03189 )

atom 2 As

Ex ( -2.04609 0.00000 0.00000 )

Ey ( 0.00000 -2.04609 0.00000 )

Ez ( 0.00000 0.00000 -2.04609 )

Diagonalizing the dynamical matrix

q = ( 0.000000000 0.000000000 0.000000000 )

**************************************************************************

freq ( 1) = 0.142309 [THz] = 4.746905 [cm-1]

freq ( 2) = 0.142309 [THz] = 4.746905 [cm-1]

freq ( 3) = 0.142309 [THz] = 4.746905 [cm-1]

freq ( 4) = 8.264350 [THz] = 275.669027 [cm-1]

freq ( 5) = 8.264350 [THz] = 275.669027 [cm-1]

freq ( 6) = 8.264350 [THz] = 275.669027 [cm-1]

**************************************************************************
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Here we recognize the high-frequency dielectric constant of GaAs, ε∞ = 11.56, and the Born effective
charges of Ga ans As, respectively Z∗Ga = 2.03 and Z∗As = −2.04 (in principle these two values should
add up to zero, but we have some numerical error).
The calculated dielectric constant is about 6% higher than the experimental value, εexp∞ = 10.89. This
overestimation is related to the band gap problem of DFT, which will be discussed in Lecture 5.1.

In the previous page we can see that the optical modes exhibit three identical frequencies, while we
were expecting two degenerate TO modes and one LO mode at a higher frequency.
The reason why the modes are degenerate is that the calculation performed by ph.x missed a contri-
bution, called the ‘non-analytical part of the dynamical matrix’. This contribution can be calculated
by using the dielectric constant and Born charges. Let us see how:

We create a new input file for dynmat.x:

$ cat > dynmat.in << EOF

&input

fildyn = 'dyn',

asr = 'simple',

lperm = .true.,

q(1)=1.0,

q(2)=0.0,

q(3)=0.0

/

EOF

Here q(1), q(2), and q(3) specify the direction along which we approach q → 0 (the LO-TO
splitting is direction-dependent). When one of these numbers is nonzero, dynmat.x understands that
it must read the dielectric constant and Born charges, calculate the LO-TO correction, and determine
IR activities. The additional flag lperm specifies that we also want the static permittivity. After
running dynmat.x we should obtain the following:

$ ./dynmat.x < dynmat.in

...

IR activities are in (D/A)^2/amu units

# mode [cm-1] [THz] IR

1 0.00 0.0000 0.0000

2 0.00 0.0000 0.0000

3 0.00 0.0000 0.0000

4 275.63 8.2632 2.6559

5 275.63 8.2632 2.6559

6 295.77 8.8670 2.6559

Electronic dielectric permittivity tensor (F/m units)

11.559430 0.000000 0.000000

0.000000 11.559430 0.000000

0.000000 0.000000 11.559430

... with zone-center polar mode contributions

13.080194 -0.000000 0.000000

0.000000 13.310576 0.000000

0.000000 0.000000 13.310576
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We can see that now we have 2 degenerate TO modes at 34.17 meV, and 1 LO mode at 36.67 meV.
The corresponding LO-TO splitting is 2.5 meV, in good agreement with the experimental value of
2.72 meV obtained by Strauch & Dorner, J. Phys. Condens. Matter 2, 1457 (1990).

The dielectric constants are highlighted in magenta. Here we see that ε0 = 13.08. For comparison
the experimental value is εexp0 = 12.9, therefore the relative deviation is of only 1.4%.

In the output file we also see the IR activities in units of debye/Å2/amu.

We should be careful in interpreting these data: IR measurements on thick films only detect TO
modes; LO modes are seen in thin films at oblique incidence (Berreman effect), and the relative
intensities of LO and TO modes depend on the angle of incidence and film thickness. Some illustrative
measurements on III-V semiconductors can be found in Ibáñez et al, J. Appl. Phys. 104, 033544
(2008).

Note. The procedure that we used to calculate the LO-TO splitting can be bypassed by performing a direct
calculation of phonon frequencies using a small but nonzero wavevector. For example we could simply use:

phonons of GaAs near Gamma

&inputph

prefix = 'gaas',

amass(1) = 69.723,

amass(2) = 74.9216,

fildyn = 'dyn',

tr2_ph = 1.0d-14,

/

0.01 0.0 0.0

This gives two degenerate TO phonons at 34.17 meV and one LO phonon at 36.67 meV, in agreement with

our previous calculation.

This alternative procedure is perfectly legitimate, but it does not provide us with Born charges, dielectric

constants, and IR activities.
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. An introduction to density functional theory for experimentalists

Tutorial 4.2

Hands-on session

We create a new folder as usual:

> cd ~/scratch/summerschool; mkdir tutorial-4.2 ; cd tutorial-4.2

In this tutorial we study the phonon dispersion relations of diamond, GaAs and SrTiO3.

Exercise 1

I Familiarize yourself with the calculation of the phonon dispersion relations of diamond, following
step-by-step the procedure outlined in Tutorial 4.1.

Exercise 2

IRepeat the calculations illustrated in Tutorial 4.1 for GaAs. Note that all these calculations refer
to zone-center phonons, q → 0.

Exercise 3

If you succeeded to complete Exercise 2, you should now see in your working directory the file
dynmat.axsf. This file has been produced by the code dynmat.x that was invoked at the very end
of the exercise.

The file dynmat.axsf contains the vibrational eignemodes in a format which can be read and visu-
alized by xcrysden. Let us recall that these modes correspond to the atomic displacement patterns
associated with a wavevector q → 0 along the direction x (this was specified in the input file
dynmat.in).

I In this exercise we want to visualize these modes.

Let us call xcrysden and go through the following steps. We open the dynmat.axsf file:
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For the time being we ignore the window indicating the ‘current slide’. This window will be used later
to select the vibrational mode to be visualized.

We activate the visualization of ‘forces’ (in our case the arrows will represent displacements, not
forces, but the file format and the naming conventions are the same).

We adjust the length of the arrows by a uniform scaling

We ask the program to show the Cartesian axes.
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At this point we can use the window entitled ‘Current Slide’ to inspect each vibrational modes. The
result should look similar to the following:

mode 1 mode 2 mode 3

mode 4 mode 5 mode 6

Here we should be able to recognize the three translational modes at q = 0 (modes 1–3), which
should have ω = 0. We can also recognize the optical phonons (modes 4–6): in these modes Ga
and As atoms move in opposite directions. Furthermore, we see that in modes 4 and 5 the atomic
displacements are along y and z, while in mode 6 the atoms displace along x. Since we have q along
the x axis (see dynmat.in), we can conclude that mode 6 is LO, while modes 4–5 are TO.
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Exercise 4

ICalculate the phonon dispersion relations of GaAs, including the LO-TO splitting.

Note: In this exercise we need to combine what we have learned when we calculated the phonon dispersion relations of
diamond, and what we did for calculating the LO-TO splitting in GaAs. The correct input file for ph.x is:

> cat > ph.in << EOF

phonons of GaAs

&inputph

prefix = 'gaas',

amass(1) = 69.723,

amass(2) = 74.9216,

epsil = .true.,

zeu = .true.,

fildyn = 'dyn',

tr2_ph = 1.0d-14,

ldisp = .true.,

nq1 = 4,

nq2 = 4,

nq3 = 4,

/

EOF

In this input file the flags in blue instruct ph.x to calculate the electronic dielectric permittivity tensor and the Born
effective charges. These quantities are needed in order to correctly describe the LO-TO splitting. The lines in red
instruct the code to calculate phonons on a uniform grid of 4 × 4 × 4 q-points.
In order to obtain the dispersion relations, you will need to call pw.x, ph.x, q2r.x, and matdyn.x as we already did for
diamond:

mpirun -np 12 pw.x -npool 4 < scf.in > scf.out

mpirun -np 12 ph.x -npool 4 < ph.in > ph.out

./q2r.x < q2r.in

./matdyn.x < matdyn.in

The input files q2r.in and matdyn.in must be prepared in the same way as for diamond. The input file scf.in for

GaAs is the same as the one that we used in Tutorial 4.1.

IPlot the phonon dispersion relations of GaAs along the Brillouin zone path LΓX (as we did for
diamond in Tutorial 4.1).

IVerify that the LO-TO splitting at Γ is the same as that calculated in Exercise 2.

ICompare your phonon dispersion relations with the inelastic neutron scattering data of Strauch &
Dorner, J. Phys. Condens. Matter 2, 1457 (1990).

As a sanity check, you should be able to obtain dispersion relations resembling the following:
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Exercise 5

In this exercise we want to calculate the phonon dispersion relations of cubic SrTiO3, including the
LO-TO splitting.

IWe will use the input file scf.in from Tutorial 3.2 (with the optimized parameters given at the
beginning of T3.2/Exercise 5), and the pseudopotentials from the same tutorial. Try to perform a
test run using this setup, in order to make sure that everything goes smoothly.

IWe now adapt to the case of SrTiO3 the input file ph.in prepared in Exercise 4 for GaAs:

> cat > ph.in << EOF

phonons of STO

&inputph

prefix = 'sto',

amass(1) = 87.62,

amass(2) = 47.867,

amass(3) = 15.9994,

epsil = .true.,

zeu = .true.,

fildyn = 'dyn',

tr2_ph = 1.0d-14,

ldisp = .true.,

nq1 = 2,

nq2 = 2,

nq3 = 2,

/

EOF

Now you can execute ph.x using this input file.
You should find out that the execution takes much longer than in the case of GaAs.

Calculations on SrTiO3 are more time-consuming than for GaAs since we now have 24 electrons per
unit cell, and we are using a cutoff of 210 Ry. In these cases it is convenient to perform calculations
in two steps:

1) We reduce massively the kinetic energy cutoff and the Brillouin zone sampling, and carry out
the calculations until we manage to obtain our phonon dispersion relations. These results will
be inaccurate and unreliable, but they will allow us to test every step very quickly.

2) Once we are confident about the complete procedure, we launch a ‘production’ calculation with
all the optimized convergence parameters. This may take up to 30min on 12 cores, but now
we can be confident that the calculation will complete successfully.

I Following this two-step procedure, reduce the cutoff to 50 Ry and the Brillouin zone sampling to
2 2 2 1 1 1, and calculate the phonon dispersion relations of SrTiO3. The procedure is identical
to what was done for GaAs on pag. 4.

Note: In this case we can plot the dispersions along the high-symmetry path ΓXMΓR. The Cartesian coordinates of
these points are Γ : (0, 0, 0), X : (0.5, 0, 0), M : (0.5, 0.5, 0), R : (0.5, 0.5, 0.5) in units of 2π/a. The matdyn.in file
will be:

&input

asr = 'no',

flfrc = 'sto.fc',

flfrq = 'sto.freq'

/

41
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0.000 0.000 0.000

0.050 0.000 0.000

0.100 0.000 0.000

0.150 0.000 0.000

0.200 0.000 0.000

0.250 0.000 0.000

0.300 0.000 0.000

0.350 0.000 0.000

0.400 0.000 0.000

0.450 0.000 0.000

0.500 0.000 0.000

0.500 0.050 0.000

0.500 0.100 0.000

0.500 0.150 0.000

0.500 0.200 0.000

0.500 0.250 0.000

0.500 0.300 0.000

0.500 0.350 0.000

0.500 0.400 0.000

0.500 0.450 0.000

0.500 0.500 0.000

0.450 0.450 0.000

0.400 0.400 0.000

0.350 0.350 0.000

0.300 0.300 0.000

0.250 0.250 0.000

0.200 0.200 0.000

0.150 0.150 0.000

0.100 0.100 0.000

0.050 0.050 0.000

0.000 0.000 0.000

0.050 0.050 0.050

0.100 0.100 0.100

0.150 0.150 0.150

0.200 0.200 0.200

0.250 0.250 0.250

0.300 0.300 0.300

0.350 0.350 0.350

0.400 0.400 0.400

0.450 0.450 0.450

0.500 0.500 0.500

You should obtain something like the following:
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INow that are are confident about the entire procedure, we can perform a production run in order
to obtain the final dispersion relations: you can repeat the entire procedure by using the optimized
parameters ecutwfc = 210 and K_POINTS automatic 4 4 4 1 1 1.

The final result should look as follows (in this plot a denser path of q-points was used):

ICompare your result with those reported by Ghosez et al, AIP Conf. Proc. 535, 102 (2000) and
by Cancellieri et al, Nat. Commun. 7, 10386 (2016).

I In the plot at the top of this page the curves in red denote imaginary frequencies, that is modes
for which ω2 < 0. Since ω2 represents the curvature of the potential energy surface, negative values
imply that the system is in a local maximum of the energy surface, and is therefore unstable with
respect to those vibrational modes.
In order to better understand the origin of these instabilities, use xcrysden to visualize the displace-
ment patterns of the soft modes at Γ, M , and R.

In order to use xcrysden you will need to generate dynmat.axsf files as in Exercise 3, using dynmat.x. The
dynmat.in files should look as follows:

&input

fildyn = 'dyn1'

/

where dyn1 is for the Γ point, dyn3 is for the M point, and dyn4 is for the R point.

The soft modes, that is the modes with imaginary frequency, should look as follows:

Γ (modes 1–3) M (mode 1) R (modes 1–3)
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The soft modes at Γ indicate the presence of a ferroelectric (quantum paraelectric) instability, the
soft modes at M and R indicate instabilities against rotations of the TiO6 octahedra. The origin of
these soft modes lies in that we are performing ground-state calculations (ie at 0 K) for the cubic
structure of SrTiO3, but the cubic structure is only stable above 110 K. These soft modes can be
taken as an indication of the tendency of the system to lower its symmetry. The soft modes disappear
when performing calculations on larger orthorhombic unit cells (containing 20 atoms per cell).

ICalculate the dielectric permittivity and IR activities of cubic SrTiO3, using dynmat.x.

In this case the appropriate input file is

&input

fildyn = 'dyn1',

asr = 'no',

lperm = .true.,

q(1)=1.0,

q(2)=0.0,

q(3)=0.0

/

Note that we are instructing dynamt.x to read data from dyn1, which corresponds to the Γ point. In this case we are
also skipping the acoustic sum rule: the use of the sum rule is not meaningful when we have soft modes associated with
structural instabilities.

Here we should be careful in interpreting our data: the static permittivity ε0 is not reliable since we
have soft modes with a large IR activity.
Generally speaking, calculations for the high-temperature cubic phase of SrTiO3 should include tem-
perature and quantum nuclear effects.
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. An introduction to density functional theory for experimentalists

Tutorial 5.1

$ cd ~/scratch/summerschool ; mkdir tutorial-5.1 ; cd tutorial-5.1

In this tutorial we will see how to calculate the band structures and the optical absorption spectra of
semiconductors.

Band structures

We start from the band structure of silicon. First we copy the setup from Tutorial 2.1:

$ cp ../espresso-5.4.0/bin/pw.x ./

$ wget http://www.quantum-espresso.org/wp-content/uploads/upf_files/Si.pz-vbc.UPF

$ cat > scf.in << EOF

&control

calculation = 'scf'

prefix = 'silicon',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 2,

celldm(1) = 10.2094,

nat = 2,

ntyp = 1,

ecutwfc = 25.0,

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Si 28.086 Si.pz-vbc.UPF

ATOMIC_POSITIONS

Si 0.00 0.00 0.00

Si 0.25 0.25 0.25

K_POINTS automatic

4 4 4 1 1 1

EOF

We test that everything is in place by performing the usual test run. For this we submit a batch job
with the line:

mpirun -np 12 pw.x -npool 1 < scf.in > scf.out

Now we want to calculate the band structure. This calculation is ‘non self-consistent’, in the sense that
we use the ground-state electron density, Hartree, and exchange and correlation potentials determined
in the previous run. In a non self-consistent calculation the code pw.x determines the Kohn-Sham
eigenfunctions and eigenvalues without upgrading the Kohn-Sham Hamiltonian at every step. This
is achieved by using the keyword calculation = 'bands' and by specifying the k-points for which
we want the eigenvalues:
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$ cat > nscf.in << EOF

&control

calculation = 'bands'

prefix = 'silicon',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 2,

celldm(1) = 10.2094,

nat = 2,

ntyp = 1,

ecutwfc = 25.0,

nbnd = 8,

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Si 28.086 Si.pz-vbc.UPF

ATOMIC_POSITIONS

Si 0.00 0.00 0.00

Si 0.25 0.25 0.25

K_POINTS tpiba_b

3

0.500 0.500 0.500 10

0.000 0.000 0.000 10

1.000 0.000 0.000 10

EOF

In this input file we are using the same path in the Brillouin zone that we used for the phonon dis-
persion relations of diamond in Tutorial 4.1. The keyword tpiba_b after K_POINTS specifies that we
want pw.x to generate a path going through the points specified in the list. The following number
(3) is the number of vertices, and the integer following the coordinates (10) is the number of points
in each segment.
So in this case we will have 10 points from L = (1/2, 1/2, 1/2)2π/a to Γ = (0, 0, 0) and 10 points
from Γ = (0, 0, 0) to X = (1, 0, 0)2π/a. The points are given in Cartesian coordinates and in units
of 2π/a.
In this input file we also specify the number of bands that we want to calculate: in order to see the
4 valence bands of silicon and the 4 lowest conduction bands we are setting nbnd = 8.

After executing pw.x using our batch script:

mpirun -np 12 pw.x -npool 12 < nscf.in > nscf.out

we can find the Kohn-Sham eigenvalues in the output file nscf.out (vi nscf.out and / band):

...

End of band structure calculation

k = 0.5000 0.5000 0.5000 ( 568 PWs) bands (ev):

-3.4467 -0.8437 4.9918 4.9918 7.7616 9.5416 9.5416 13.7947

k = 0.4500 0.4500 0.4500 ( 571 PWs) bands (ev):

-3.5870 -0.6409 5.0097 5.0097 7.7820 9.5628 9.5628 13.8281

...

25-29 July 2016 F. Giustino Tutorial 5.1 | 2 of 12



Un
iv
er
si
ty

of
Ox
fo
rd

Pr
of
.

Fe
li
ci
an
o
Gi
us
ti
no

PA
RA
DI
M
Sc
ho
ol

· C
or
ne
ll
,
Ju
ly

20
16

Here, for each k-point in the input file, we have the coordinates of the point (blue) and the calculated
eigenvalues in eV (red). We see 8 eigenvalues because we have requested 8 bands.
In order to plot the bands along the chosen path, we must extract manually these eigenvalues, and
calculate the distance along the path as we move from L to Γ to X. We can do this quickly using
the following tcsh script:

$ more extract.tcsh

set klines = `grep -nr " k =" nscf.out | cut -d : -f 1`

set k0 = `head -$klines[1] nscf.out | tail -1`

set kk = 0

foreach NLINE ( $klines )

set k = `head -$NLINE nscf.out | tail -1`

@ NLINE = $NLINE + 2

set eigenv = `head -$NLINE nscf.out | tail -1`

set kk=`awk "BEGIN{print $kk +sqrt(($k[3]-$k0[3])^2+($k[4]-$k0[4])^2+($k[5]-$k0[5])^2)}"`

set k0 = `echo $k`

echo $kk $eigenv

end

$ tcsh extract.tcsh > bands.txt

At this point the file bands.txt will contain the distance along the k-point path and the eigenvalues
in each column. We can plot this file using the following gnuplot instructions:

$ cat > plot.gp << EOF

unset key

set xlabel "k-point path [2pi/a]"

set xtics ("L" 0, "G" 0.866, "X" 1.866)

set ylabel "Energy (eV)"

set style line 1 lc 3 lw 2

plot "bands.txt" u 1:2 w l ls 1, \

"bands.txt" u 1:3 w l ls 1, \

"bands.txt" u 1:4 w l ls 1, \

"bands.txt" u 1:5 w l ls 1, \

"bands.txt" u 1:6 w l ls 1, \

"bands.txt" u 1:7 w l ls 1, \

"bands.txt" u 1:8 w l ls 1, \

"bands.txt" u 1:9 w l ls 1

EOF

$ gnuplot

gnuplot> load "plot.gp"

The result should look similar to the following plot:
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16Here the conduction bands have been colored in red and a smoothing has been used via the option

smooth csplines of gnuplot.

By looking for the valence band top at Γ and the conduction band bottom along the Γ-X line, we
find that the band gap of silicon in DFT/LDA is Eg = 0.5128 eV. The calculated band gap is much
smaller than the experimental value of 1.2 eV.

Visualizing Kohn-Sham wavefunctions

Following the calculation of the band structure of silicon, we can visualize the wavefunctions corre-
sponding to selected Kohn-Sham eigenvalues.

In order to plot a wavefunction we must use a post-processing code named pp.x. We compile this
code as we already did for pw.x and pp.x:

$ cd ../espresso-5.4.0 ; make pp

$ cd ../tutorial-5.1 ; cp ../espresso-5.4.0/bin/pp.x ./

This small post-processing code reads the output of a pw.x run, and rewrites it in a format compatible
with standard visualization software. The structure of the input file of pp.x is:

&inputpp

prefix = 'silicon'

outdir = './',

filplot = 'wavefc'

plot_num = 7

lsign = .true.

kpoint = 11

kband = 4

/

&plot

iflag = 3

output_format = 5

fileout = 'silicon.xsf'

/

The important input variables are shown in color. plot_num = 7 specifies that we want to plot the
square modulus of Kohn-Sham wavefunctions, and the flag lsign = .true. is to keep track of the
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sign of the wavefunction. The variables kpoint and kband indicate the k-point and band that we
want to plot. In this case we are choosing the 11-th point from the list on page 2 and the band num-
ber 4. This is precisely the valence band top at Γ. The flags iflag = 3 and output_format = 5

specify that we want a 3D plot and that this must be in xcrysden format, respectively.

There are many other options for plotting other quantities of interest, for the complete range please
see the documentation page:

http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PP.html

In order to obtain our wavefunction, first we execute pw.x from the previous section, and then we
run pp.x using the same number of CPUs and in the same batch script:

mpirun -np 12 pw.x < nscf.in

mpirun -np 12 pp.x < pp.in

After this operation we should have in our directory the file silicon.xsf. We visualize the wave-
functions by launching xcrysden and following the steps below:
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In this example we can see that the electrons at the valence band top concentrate around the Si–Si
bonds, as expected from tight-binding models.

Calculation of UV/Vis spectra

Now we consider the band structure and the optical absorption spectrum of GaAs. We already
studied GaAs in Tutorial 4.1, therefore we can start from the same scf.in file:

$ wget http://www.quantum-espresso.org/wp-content/uploads/upf_files/Ga.pz-bhs.UPF

$ wget http://www.quantum-espresso.org/wp-content/uploads/upf_files/As.pz-bhs.UPF

$ cat > scf.in << EOF

&control

calculation = 'scf'

prefix = 'gaas',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 2,

celldm(1) = 10.4749,

nat = 2,

ntyp = 2,

ecutwfc = 40.0,

/

&electrons

/

ATOMIC_SPECIES

Ga 1.0 Ga.pz-bhs.UPF

As 1.0 As.pz-bhs.UPF

ATOMIC_POSITIONS crystal

Ga 0.00 0.00 0.00

As 0.25 0.25 0.25

K_POINTS automatic

6 6 6 1 1 1

EOF
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We perform a test run to make sure that everything works:

mpirun -np 12 pw.x -npool 12 < scf.in > scf.out

Now we can take a look at the band structure of GaAs. The procedure is identical to what we just
did for silicon, and we can recycle most of the input file nscf.in from pag. 1. The colored lines
below indicate the modifications required to work with GaAs instead of Si. These parameters are
taken directly from the input file scf.in above:

$ cat > nscf.in << EOF

&control

calculation = 'bands'

prefix = 'gaas',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 2,

celldm(1) = 10.4749,

nat = 2,

ntyp = 2,

ecutwfc = 40.0,

nbnd = 8,

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Ga 1.0 Ga.pz-bhs.UPF

As 1.0 As.pz-bhs.UPF

ATOMIC_POSITIONS

Ga 0.00 0.00 0.00

As 0.25 0.25 0.25

K_POINTS tpiba_b

3

0.500 0.500 0.500 10

0.000 0.000 0.000 10

1.000 0.000 0.000 10

EOF

We can now run the band structure calculation, precisely as we did for silicon:

mpirun -np 12 pw.x < scf.in > scf.out

mpirun -np 12 pw.x < nscf.in > nscf.out

At the end of the run we extract the k-point path and the Kohn-Sham eigenvalues again using the
script extract.tcsh, and plot these data using plot.gp.
The resulting band structure should look as follows (this plot has also been smoothed and the color
of the conduction bands has been modified):
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16In this calculation we see that the direct gap at Γ is Eg =1.42 eV. This value is unusually close to

experiment (1.52 eV) for a DFT/LDA calculation. We can also see that in this calculation we have
an indirect gap of 1.35 eV along the ΓX line. This is an artifact of the DFT/LDA approximation
(GaAs is a direct-gap semiconductor).

Now we calculate the imaginary part of the dielectric function, ε2(ω), which is related to the optical
absorption coefficient κ(ω) by:

κ(ω) =
ω ε2(ω)

c n(ω)

where ~ω is the photon energy, c the speed of light, and n the refractive index.

In order to calculate ε2(ω) we use the post-processing code epsilon.x. We already compiled this
program when we issued make pp on pag. 4, therefore we only need to copy the code inside the
current directory:

$ cp ../espresso-5.4.0/bin/epsilon.x ./

The manual of this post-processing code can be found in the directory ../espresso-5.4.0/PP/Doc.
To obtain a PDF version we simply issue:

$ cd ../espresso-5.4.0/PP ; make doc

The as-compiled PDF file eps_man.pdf will be found in the directory espresso-5.4.0/PP/Doc.

The input file for epsilon.x is as follows:

$ cat > eps.in << EOF

&inputpp

outdir = './'

prefix = 'gaas'

calculation = 'eps'

/

&energy_grid

smeartype = 'gauss'

intersmear = 0.2

wmin = 0.0
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wmax = 30.0

nw = 500

/

EOF

This file instructs epsilon.x to calculate the real and the imaginary parts of the dielectric function,
ε1(ω) and ε2(ω). The variables smeartype and intersmear define the numerical approximation used
to represent the Dirac delta functions in the expression that we have seen in Lecture 5.1. The variables
wmin, wmax and nw define the energy grid for the dielectric function. All the energy variables are in eV.

Before executing epsilon.x we need to perform a new run with pw.x, using a slightly modified input
file:

$ cat > scf_eps.in << EOF

&control

calculation = 'scf'

prefix = 'gaas',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 2,

celldm(1) = 10.4749,

nat = 2,

ntyp = 2,

ecutwfc = 40.0,

nosym = .true.

nbnd = 20

/

&electrons

/

ATOMIC_SPECIES

Ga 1.0 Ga.pz-bhs.UPF

As 1.0 As.pz-bhs.UPF

ATOMIC_POSITIONS crystal

Ga 0.00 0.00 0.00

As 0.25 0.25 0.25

K_POINTS crystal

64

0.12 0.12 0.12 0.016

0.12 0.12 0.38 0.016

0.12 0.12 0.62 0.016

0.12 0.12 0.88 0.016

0.12 0.38 0.12 0.016

0.12 0.38 0.38 0.016

0.12 0.38 0.62 0.016

0.12 0.38 0.88 0.016

0.12 0.62 0.12 0.016

0.12 0.62 0.38 0.016

0.12 0.62 0.62 0.016

0.12 0.62 0.88 0.016

0.12 0.88 0.12 0.016

0.12 0.88 0.38 0.016

0.12 0.88 0.62 0.016

0.12 0.88 0.88 0.016

0.38 0.12 0.12 0.016

0.38 0.12 0.38 0.016

0.38 0.12 0.62 0.016

0.38 0.12 0.88 0.016

0.38 0.38 0.12 0.016

0.38 0.38 0.38 0.016

0.38 0.38 0.62 0.016

0.38 0.38 0.88 0.016

0.38 0.62 0.12 0.016

0.38 0.62 0.38 0.016

0.38 0.62 0.62 0.016

0.38 0.62 0.88 0.016
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0.38 0.88 0.12 0.016

0.38 0.88 0.38 0.016

0.38 0.88 0.62 0.016

0.38 0.88 0.88 0.016

0.62 0.12 0.12 0.016

0.62 0.12 0.38 0.016

0.62 0.12 0.62 0.016

0.62 0.12 0.88 0.016

0.62 0.38 0.12 0.016

0.62 0.38 0.38 0.016

0.62 0.38 0.62 0.016

0.62 0.38 0.88 0.016

0.62 0.62 0.12 0.016

0.62 0.62 0.38 0.016

0.62 0.62 0.62 0.016

0.62 0.62 0.88 0.016

0.62 0.88 0.12 0.016

0.62 0.88 0.38 0.016

0.62 0.88 0.62 0.016

0.62 0.88 0.88 0.016

0.88 0.12 0.12 0.016

0.88 0.12 0.38 0.016

0.88 0.12 0.62 0.016

0.88 0.12 0.88 0.016

0.88 0.38 0.12 0.016

0.88 0.38 0.38 0.016

0.88 0.38 0.62 0.016

0.88 0.38 0.88 0.016

0.88 0.62 0.12 0.016

0.88 0.62 0.38 0.016

0.88 0.62 0.62 0.016

0.88 0.62 0.88 0.016

0.88 0.88 0.12 0.016

0.88 0.88 0.38 0.016

0.88 0.88 0.62 0.016

0.88 0.88 0.88 0.016

EOF

The modifications brought to our standard input file are as follows:

• We explicitly provide a uniform grid of k-points

• We turn off the automatic reduction of k-points that pw.x does by using crystal symmetries

• We request a number of bands much larger than the number of valence bands, since we are
interested in interband transitions.

The first two modifications are related to the fact that epsilon.x is a fairly basic post-processing
code and does not recognize crystal symmetries.

The grid used in the above input file is a uniform and shifted 4×4×4 mesh in the Brillouin zone (64
points).
We can now execute pw.x and epsilon.x using the following lines in our batch script:

mpirun -np 12 pw.x -npool 12 < scf_eps.in > scf_eps.out

mpirun -np 12 epsilon.x -npool 12 < eps.in > eps.out

At the end of the execution we wil find the output files:
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$ more epsr.dat

# energy grid [eV] epsr_x epsr_y epsr_z

0.000000 11.787553 11.787537 11.787546

0.060120 11.790677 11.790662 11.790670

...

$ more epsi.dat

# energy grid [eV] epsi_x epsi_y epsi_z

0.000000 0.000000 0.000000 0.000000

0.060120 0.010446 0.010446 0.010446

...

The first file contains the real part of the dielectric function, for an electric field polarized along x, y,
or z. The second file is the corresponding imaginary part. In this case the system is cubic, therefore
the x, y and z components will be identical.

A plot of these quantities using gnuplot yields:

From this figure we can read the high-frequency dielectric constant of GaAs, ε∞ = 11.8. This value
is similar but not identical to what we obtained in Tutorial 4.1 (11.6). This difference is due to the
different sampling of the Brillouin zone and the different computational technique employed here.

In the above plot we can see that the curves are not very smooth. This phenomenon is related to
the sampling of the Brillouin zone: in this calculation we used a 4×4×4 mesh, and this is definitely
not enough for studying the dielectric function. The meshes required for calculations of dielectric
functions may need to contain as many as 50×50×50 points. With our coarse 4×4×4 mesh it is
difficult to identify the optical absorption onset around the direct band gap at 1.4 eV.

A more accurate calculation using a 30×30×30 mesh is shown below, together with a zoom where we
can see the onset around 1.4 eV (broadened by the Gaussian smearing, which is set to intersmear

= 0.2 eV):
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Note. The calculation of dielectric functions by means of epsilon.x suffers from two important
approximations, namely the ‘independent-particle approximation’ and the neglect of the ‘nonlocal
component’ of the pseudopotentials. As a result, while the gross structure of the spectrum is
reasonably accurate, subtle features such as the intensity and energy of the peaks are not very
reliable.
A more comprehensive discussion of dielectric functions in DFT can be found in Chapter 11 of the
Book.
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. An introduction to density functional theory for experimentalists

Tutorial 5.2

Hands-on session

$ cd ~/scratch/summerschool; mkdir tutorial-5.2 ; cd tutorial-5.2

In this tutorial we will calculate the band structures of GaAs, SrTiO3, and graphite. Then we will
test a calculation of dielectric functions for the case of GaAs.
In the last exercise we examine the performance of the LDE and PBE exchange and correlation in
predicting the interlayer binding energy and the interlayer distance in graphite.

Exercise 1

I Familiarize yourself with the calculation of band structures, following step-by-step the example of
GaAs discussed in Tutorial 5.1.

Exercise 2

In this exercise we want to calculate the band structure of SrTiO3.

IPerform a test run for SrTiO3 using exactly the same setup as in Exercise 5 of Tutorial 3.2.

As a sanity check, you should obtain a total energy of −105.4136 Ry.

INow we run a band structure calculation for SrTiO3. Prepare the input file nscf.in for the non-
selfconsistent calculation, using the high-symmetry path ΓXMΓR. The Cartesian coordinates of
these points are Γ : (0, 0, 0), X : (0.5, 0, 0), M : (0.5, 0.5, 0), R : (0.5, 0.5, 0.5) in units of 2π/a.

As a reference, the input file should look like this:

&control

calculation = 'bands'

prefix = 'sto',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 1,

celldm(1) = 7.18899,

nat = 5,

ntyp = 3,

ecutwfc = 210.0,

nbnd = 20,

/

&electrons

/

ATOMIC_SPECIES

Sr 1.0 Sr.pz-hgh.UPF

Ti 1.0 Ti.pz-hgh.UPF
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O 1.0 O.pz-hgh.UPF

ATOMIC_POSITIONS crystal

Sr 0.0 0.0 0.0

Ti 0.5 0.5 0.5

O 0.5 0.0 0.5

O 0.5 0.5 0.0

O 0.0 0.5 0.5

K_POINTS tpiba_b

5

0.0 0.0 0.0 10

0.5 0.0 0.0 10

0.5 0.5 0.0 10

0.0 0.0 0.0 10

0.5 0.5 0.5 10

Note that the number of bands must be increased in order to calculate conduction states (here we
have set nbnd = 20).

IAfter executing pw.x with this input file, you can extract the Kohn-Sham eigenvalues and the
coordinate along the k-path using the following tcsh script:

$ more extract2.tcsh

set klines = `grep -nr " k =" nscf.out | cut -d : -f 1`

set k0 = `head -$klines[1] nscf.out | tail -1`

set kk = 0

foreach NLINE ( $klines )

set k = `head -$NLINE nscf.out | tail -1`

@ NLINE = $NLINE + 4

set eigenv = `head -$NLINE nscf.out | tail -3`

set kk=`awk "BEGIN{print $kk +sqrt(($k[3]-$k0[3])^2+($k[4]-$k0[4])^2+($k[5]-$k0[5])^2)}"`

set k0 = `echo $k`

echo $kk $eigenv

end

$ tcsh extract2.tcsh > bands.txt

The band structure in bands.txt can be plotted for example using gnuplot:

$ cat > plot_STO.gp << EOF

unset key

set xlabel "Wavevector [2pi/a]"

set xtics ("G" 0.0, "X" 0.500, "M" 1.000, "G" 1.707, "R" 2.573)

set ylabel "Energy (eV)"

set style line 1 lc 3 lw 2

set grid

plot [] [0:11] \\

"bands.txt" u 1:2 w l ls 1, \

"bands.txt" u 1:3 w l ls 1, \

"bands.txt" u 1:4 w l ls 1, \

...

EOF

$ gnuplot

gnuplot> load "plot_STO.gp"
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As a reference, the plot should look similar to the following:

IUsing the band structure just calculated, determine the lowest direct and indirect band gaps of
SrTiO3 in DFT/LDA.

ICompare your band gaps and band structure with previous experimental and theoretical work from
Benthem et al, J. Appl. Phys. 90, 6156 (2001) and from Benrekia et al, Physica B 407, 2632 (2012).

Exercise 3

In this exercise we calculate the band structure of graphite.

IPerform a test run for the total energy of graphite in the ground state, using the optimized setup
determined in Exercise 3 of Tutorial 2.2.

As a reminder, the optimized input file scf.in is:

&control

calculation = 'scf'

prefix = 'graphite',

pseudo_dir = './',

outdir = './'

/

&system

ibrav = 4,

celldm(1) = 4.60913,

celldm(3) = 2.729,

nat = 4,

ntyp = 1,

ecutwfc = 100,

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

C 1.0 C.pz-vbc.UPF

ATOMIC_POSITIONS crystal

C 0.00 0.00 0.25

C 0.00 0.00 0.75

25-29 July 2016 F. Giustino Tutorial 5.2 | 3 of 8

http://dx.doi.org/10.1063/1.1415766
http://dx.doi.org/10.1016/j.physb.2012.04.013


Un
iv
er
si
ty

of
Ox
fo
rd

Pr
of
.

Fe
li
ci
an
o
Gi
us
ti
no

PA
RA
DI
M
Sc
ho
ol

· C
or
ne
ll
,
Ju
ly

20
16

C 0.333333 0.666666 0.25

C 0.666666 0.333333 0.75

K_POINTS automatic

6 6 2 1 1 1

IPrepare the input file nscf.in for the band structure calculation along the high-symmetry path
K → Γ→M → K → H → A→ L→ H.
In this case we want to perform calculations for 16 bands.
The location of the high-symmetry points in the Brillouin zone of graphite is given below:

In order the generate the k-point path we can use xcrysden. After loading the input file scf.in

inside xcrysden, we go through the following steps:

At the end of the file myfile.kpf we will find the desired path. Here each vertex is expressed in
crystal coordinates, that is in terms of the primitive vectors of the reciprocal lattice.

$ more myfile.kpf

...
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#

# #----------------------------------#

# # REAL FORM of k-point COORDINATES #

# #----------------------------------#

#

Real form of k-point coordinates (kx,ky,kz,label):

0.6666666667 -0.3333333333 0.0000000000 K.1

0.0000000000 0.0000000000 0.0000000000 K.2

0.5000000000 0.0000000000 0.0000000000 K.3

0.6666666667 -0.3333333333 0.0000000000 K.4

0.6666666667 -0.3333333333 0.5000000000 K.5

0.0000000000 0.0000000000 0.5000000000 K.6

0.5000000000 0.0000000000 0.5000000000 K.7

0.6666666667 -0.3333333333 0.5000000000 K.8

...

Since the coordinates of the vertices are expressed in terms of the reciprocal lattice vectors, in our
input file we will need to replace K_POINTS tpiba_b by K_POINTS crystal_b. Please see the re-
lated online documentation.

As a reference, the correct input file should contain the following lines:

$ more nscf.in

...

K_POINTS crystal_b

8

0.6666666667 -0.3333333333 0.0000000000 10

0.0000000000 0.0000000000 0.0000000000 10

0.5000000000 0.0000000000 0.0000000000 10

0.6666666667 -0.3333333333 0.0000000000 10

0.6666666667 -0.3333333333 0.5000000000 10

0.0000000000 0.0000000000 0.5000000000 10

0.5000000000 0.0000000000 0.5000000000 10

0.6666666667 -0.3333333333 0.5000000000 10

Once executed pw.x using the input file nscf.in, we can extract the bands using exactly the same
script extract2.tcsh as in Exercise 2.

IPlot the band structure of graphite using gnuplot.

A possible gnuplot script for this is:

unset key

set xlabel "Wavevector [2pi/a]"

set xtics ("K" 0.0, "G" 0.6667, "M" 1.24406, "K" 1.57744, "H" 1.76064, "A" 2.42734, "L" 3.00469, "H" 3.33807)

set ylabel "Energy (eV)"

set style line 1 lc 3 lw 2

set grid

plot [0:3.33807] [:20] \

"bands.txt" u 1:2 w l ls 1, \

"bands.txt" u 1:3 w l ls 1, \

...

"bands.txt" u 1:16 w l ls 1, \

"bands.txt" u 1:17 w l ls 1
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ICompare your calculated band structure with the results of Marinopoulos et al, Phys. Rev. B 69,
245419 (2004).

Exercise 4

IUsing the post-processing program pp.x, verify that the wavefunctions near the Dirac point are
pz orbitals as expected (the Dirac point is the K point, at the intersection between valence and
conduction bands).

We can run pp.x using the following input file, after having specified the appropriate k-point and
band:

&inputpp

prefix = 'graphite'

outdir = './',

filplot = 'wavefc'

plot_num = 7

kpoint = ...

kband = ...

/

&plot

iflag = 3

output_format = 5

fileout = 'graphite.xsf'

/

By tuning the isosurface value you should be able to obtain something similar to the following:

Exercise 5

In this exercise we want to calculate the optical absorption spectrum of GaAs, precisely as we did in
Tutorial 5.1.

IRepeat the steps on pagg. 8–11 of Tutorial 5.1 in order to calculate the absorption spectrum of
GaAs.

IRun epsilon.x once again, this time using a smearing parameter intersmear = 0.02 eV.
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ICompare the imaginary part of the dielectric function of GaAs, ε2(ω), obtained above using the
two smearing values 0.1 eV and 0.2 eV.

Note. In gnuplot we can do this by using the usual plot command:

gnuplot> plot "epsi_0.02.dat" u 1:2 w l, "epsi_0.2.dat" u 1:2 w l

where epsi_0.02.dat and epsi_0.2.dat indicate the output files of the two separate runs.

Here you should see that, as we reduce the artificial smearing, the curve turns into a series of discrete
peaks. This is because we are discretizing the Brillouin zone using only 64 points. An accurate
calculation requires a much finer sampling.

IPlot the energy loss function of GaAs, calculated using a Gaussian smearing of 0.5 eV, for energies
between 0 and 30 eV. The loss function is given by −Im ε−1(ω), and can be found in the output file
eels.dat.

You should obtain something looking like the following:

The energy of the peak in this plot corresponds to the valence (bulk) plasmon of GaAs.
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Exercise 6

In this exercise we want to explore the sensitivity of the structure of graphite to the exchange and
correlation functional used in the calculation.

The structure of graphite and the various calculation parameters have already been optimized in
Tutorial 2.2, and the optimized input file was given earlier, see pag. 3.

ICalculate the total energy of graphite within DFT/LDA as a function of interlayer distance, for
ratios c/a ranging between 2.2 and 3.2.
For this exercise you can simply use the scf.in file on pag. 3 and perform several calculations for
different values of celldm(3).

INow convert the results of the previous step into a cohesive energy, and plot the cohesive energy
as a function of the c/a ratio.

Note: The total energy of an isolated C atom using the same parameters as for graphite is −10.73321495 Ry.

INow we repeat the same calculations as in the previous steps, this time using the PBE exchange
and correlation functional. Determine the cohesive energy of graphite within DFT/PBE, as a function
of the ratio c/a, for the same range considered above.

Note: For this exercise we need a new pseudopotential, constructed within the PBE approximation. The
following pseudopotential has been tested separately:

$ wget http://www.quantum-espresso.org/wp-content/uploads/upf_files/C.pbe-hgh.UPF

It was found that the kinetic energy cutoff required to have total energies converged to within 10 meV is

ecutwfc = 130 Ry. Furthermore, the total energy of an isolated C atom using this pseudopotetial was calcu-

lated to be −10.82157608 Ry.

IPlot the cohesive energies just obtained, and compare the predictions of LDA and PBE. What
should we conclude from this comparison?

For your reference, the plot should look as follows:

Graphite is a prototypical system where van der Waals interactions play an important role in the
interlayer binding.
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