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Overview

3 Simple regret in Gaussian process bandit problem (kernel-based

bandit, Bayesian optimization)

3 We prove an Õ(
√

γN
N ) simple regret

3 That is tight up to logarithmic factors

3 We formalize confidence intervals for RKHS elements which may be

of broader interest
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Problem Formulation: Setting

Zeroth-order optimization

3 Consider optimization of an objective function f : X → R, X ⊂ Rd

3 From a sequence of n noisy observations {(xi, yi)}ni=1, yi = f (xi) + εi

3 “Zeroth-order” signifies direct observations from f , and not from its

gradient for example

3 x∗ ∈ argmaxx∈X f (x)

3 Objective: to get as close as possible to f (x∗),
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Problem Formulation: Algorithm

Algorithm A

3 Consider an algorithm A

3 Selects a sequence of observation points {xi}ni=1

3 Receives noisy observations {yi = f (xi) + εi}ni=1

3 Predicts a candidate maximizer x̂∗n

3 Performance of A is measured by simple regret

rAn = f (x∗)− f (x̂∗n)
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Problem Formulation: Regularity Assumptions

3 Assumption 1: f ∈ Hk, the reproducing kernel Hilbert space (RKHS)

corresponding to a positive definite kernel k

‖f‖Hk ≤ B

3 Assumption 2: Sub-Gaussian noise with parameter R

∀h ∈ R,∀n ∈ N,E[ehεn] ≤ exp(h
2R2

2 ),

3 Assumption 3 : Light-tailed noise with parameters h0, ξ0

∀h ≤ h0,∀n ∈ N,E[ehεn] ≤ exp(h
2ξ0
2 ), for some ξ0 > 0

I We solve the problem under Assumption 1 and (2 or 3)
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Surrogate Gaussian Process Model

Mean

µn(x) = k>(x,Xn)
(
k(Xn, Xn) + λ2In

)−1
Yn

Variance

kn(x, x
′) = k(x, x′)− k>(x,Xn)

(
k(Xn, Xn) + λ2In

)−1
k(x′, Xn), σ

2
n(x) = kn(x, x)

3 k(x,Xn) = [k(x, x1), k(x, x2), . . . , k(x, xn)]
T

3 k(Xn, Xn) = [k(xi, xj)]
n
i,j=1 is the covariance matrix

3 λ > 0 is a real number
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Confidence Intervals

Confidence intervals for RKHS elements with sub-Gaussian noise

3 Provided n observations {Xn, Yn}

3 Xn independent of En

3 For a fixed x ∈ X ,

f (x) ≤ µn(x) + (B + β(δ))σn(x), with probability 1− δ

f (x) ≥ µn(x)− (B + β(δ))σn(x), with probability 1− δ

β(δ) = R
λ

√
2 log(1δ)
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Confidence Intervals

Confidence intervals for RKHS elements with light-tailed noise

3 Provided n observations {Xn, Yn}

3 Xn independent of En

3 For a fixed x ∈ X ,

f (x) ≤ µn(x) + (B + β(δ))σn(x), with probability 1− δ

f (x) ≥ µn(x)− (B + β(δ))σn(x), with probability 1− δ

β(δ) = 1
λ

√
2
(
ξ0 ∨

2 log(1δ )

h20

)
log(1δ)
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Posterior Variance of the GP Model

Proposition: For the posterior variance of the surrogate GP model, we

have

σ2n(x) = supf :||f ||Hk≤1
(f (x)− Z>n (x)Fn)2 + λ2‖Zn(x)‖2l2.

3 Z>n (x) = k>(x,Xn)
(
k(Xn, Xn) + λ2In

)−1.
3 maximum prediction error for RKHS elements

3 noise variance



10

Pure Exploration Algorithm

Maximum variance reduction

xn = argmaxx∈X σ
2
n−1(x)
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Information Gain

3 Mutual information between Yn and f

I(Yn; f ) = log det
(
In +

1
λ2
k(Xn, Xn)

)
3 I(Yn; f ) ∼ effective dimension of the kernel

3 Maximal information gain γN

γN = supXn⊂X I(Yn; f )

3 Matérn: γN = O
(
N

d
2ν+d(log(N))

2ν
2ν+d

)
,

Squared Exponential: γN = O
(
(log(N))d+1

)
[Srinivas et al., 2010, Vakili

et al., 2020]
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Simple Regret of MVR

Theorem: Under Assumption 1 and (2 or 3), with probability at least 1− δ

rMVR
N ≤

√
2γN

log(1+ 1
λ2

)N

(
2B + β(δ3) + β

(
δ

3C(B+
√
Nβ(2δ/3N))

d
Nd/2

))
+ 2√

N
.

3 Assumption 2: β(δ) = R
λ

√
2 log(1δ)

3 Assumption 3: β(δ) = 1
λ

√
2
(
ξ0 ∨

2 log(1δ )

h20

)
log(1δ)
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Simple Regret of MVR

3 Assumption 2:

rMVR
N = O(

√
γN log(Nd/δ)

N )

3 Assumption 3:

rMVR
N = O

(√
γN
N log(Nd/δ)

)
3 In the case of Matérn ν

rMVR
N = O

(
N

−ν
2ν+d(log(N))

ν
2ν+d
√

log(Nd/δ)
)

rMVR
N = O

(
N

−ν
2ν+d(log(N))

ν
2ν+d log(Nd/δ)

)
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Sample Complexity

3 Define

Nε = min{N ∈ N : E[rMVR
n ] ≤ ε,∀n ≥ N}

3 As a result of simple regret we have

Kernel Under Assumption 2 Under Assumption 3

SE Nε = O
(
( 1ε )

2 log( 1ε )
d+2
)

Nε = O
(
( 1ε )

2 log( 1ε )
d+3
)

Matérn-ν Nε = O
(
( 1ε )

2+ d
ν (log( 1ε )

4ν+d
2ν )

)
Nε = O

(
( 1ε )

2+ d
ν (log( 1ε )

6ν+2d
2ν )

)
3 These bounds match the lower bounds given in Scarlett et al. [2017],

up to log factors
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Discussion and Open Problem

3 Recall our confidence interval width multiplier B + R
λ

√
2 log(1δ)

3 Chowdhury and Gopalan [2017]: B +R
√

2(γn + 1 + log(1δ))

3 That results in O( γN√
N
) regret for typical algorithms such as GP-UCB

and GP-TS (that is not always sublinear)

3 Neither confidence intervals imply the other

3 A tight analysis of GP-UCB and GP-TS in the RKHS setting

remains an open problem [Vakili et al., 2021]
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