Optimal Order Simple Regret for Gaussian Process Bandits

Satar Vakili, Nacime Bouziani, Sepehr Jalali, Alberto Bernacchia, Da-shan Shiu

MediaTek Research

NeurIPS 2021

Overview

- Simple regret in Gaussian process bandit problem (kernel-based bandit, Bayesian optimization)
- \diamond We prove an $\tilde{\mathcal{O}}(\sqrt{\frac{\gamma_N}{N}})$ simple regret
- ♦ That is tight up to logarithmic factors
- We formalize confidence intervals for RKHS elements which may be of broader interest

Problem Formulation: Setting

Zeroth-order optimization

- \diamond Consider optimization of an objective function $f: \mathcal{X} \to \mathbb{R}$, $\mathcal{X} \subset \mathbb{R}^d$
- \diamond From a sequence of n noisy observations $\{(x_i,y_i)\}_{i=1}^n$, $y_i=f(x_i)+\epsilon_i$
- \diamond "Zeroth-order" signifies direct observations from f, and not from its gradient for example
- $\Diamond x^* \in \arg\max_{x \in \mathcal{X}} f(x)$
- \diamond Objective: to get as close as possible to $f(x^*)$,

Problem Formulation: Algorithm

Algorithm \mathcal{A}

- \diamond Consider an algorithm \mathcal{A}
- \Diamond Selects a sequence of observation points $\{x_i\}_{i=1}^n$
- \Diamond Receives noisy observations $\{y_i = f(x_i) + \epsilon_i\}_{i=1}^n$
- \diamond Predicts a candidate maximizer \hat{x}_n^*
- \diamond Performance of \mathcal{A} is measured by simple regret

$$r_n^{\mathcal{A}} = f(x^*) - f(\hat{x}_n^*)$$

Problem Formulation: Regularity Assumptions

 \Diamond Assumption 1: $f \in \mathcal{H}_k$, the reproducing kernel Hilbert space (RKHS) corresponding to a positive definite kernel k

$$||f||_{\mathcal{H}_k} \leq B$$

 \diamond Assumption 2: Sub-Gaussian noise with parameter R

$$\forall h \in \mathbb{R}, \forall n \in \mathbb{N}, \mathbb{E}[e^{h\epsilon_n}] \le \exp(\frac{h^2R^2}{2}),$$

 \diamond Assumption 3: Light-tailed noise with parameters h_0 , ξ_0

$$\forall h \leq h_0, \forall n \in \mathbb{N}, \mathbb{E}[e^{h\epsilon_n}] \leq \exp(\frac{h^2\xi_0}{2}), \text{ for some } \xi_0 > 0$$

▶ We solve the problem under Assumption 1 and (2 or 3)

Surrogate Gaussian Process Model

Mean

$$\mu_n(x) = k^{\top}(x, X_n) \left(k(X_n, X_n) + \lambda^2 I_n \right)^{-1} Y_n$$

Variance

$$k_n(x, x') = k(x, x') - k^{\top}(x, X_n) \left(k(X_n, X_n) + \lambda^2 I_n \right)^{-1} k(x', X_n), \ \sigma_n^2(x) = k_n(x, x)$$

$$\Leftrightarrow k(x, X_n) = [k(x, x_1), k(x, x_2), \dots, k(x, x_n)]^{\mathsf{T}}$$

$$\diamondsuit k(X_n, X_n) = [k(x_i, x_j)]_{i,j=1}^n$$
 is the covariance matrix

 $\Diamond \lambda > 0$ is a real number

Confidence Intervals

Confidence intervals for RKHS elements with sub-Gaussian noise

- \diamond Provided *n* observations $\{X_n, Y_n\}$
- $\diamondsuit X_n$ independent of E_n
- \diamond For a fixed $x \in \mathcal{X}$,

$$f(x) \leq \mu_n(x) + (B + \beta(\delta))\sigma_n(x)$$
, with probability $1 - \delta$

$$f(x) \ge \mu_n(x) - (B + \beta(\delta))\sigma_n(x)$$
, with probability $1 - \delta$

$$\beta(\delta) = \frac{R}{\lambda} \sqrt{2 \log(\frac{1}{\delta})}$$

Confidence Intervals

Confidence intervals for RKHS elements with light-tailed noise

- \diamond Provided *n* observations $\{X_n, Y_n\}$
- $\diamondsuit X_n$ independent of E_n
- \diamond For a fixed $x \in \mathcal{X}$,

$$f(x) \leq \mu_n(x) + (B + \beta(\delta))\sigma_n(x)$$
, with probability $1 - \delta$

$$f(x) \ge \mu_n(x) - (B + \beta(\delta))\sigma_n(x)$$
, with probability $1 - \delta$

$$\beta(\delta) = \frac{1}{\lambda} \sqrt{2\left(\xi_0 \vee \frac{2\log(\frac{1}{\delta})}{h_0^2}\right) \log(\frac{1}{\delta})}$$

Posterior Variance of the GP Model

Proposition: For the posterior variance of the surrogate GP model, we have

$$\sigma_n^2(x) = \sup_{f:||f||_{\mathcal{H}_k} \le 1} (f(x) - Z_n^\top(x)F_n)^2 + \lambda^2 ||Z_n(x)||_{l^2}^2.$$

$$\diamondsuit Z_n^\top(x) = k^\top(x, X_n) \left(k(X_n, X_n) + \lambda^2 I_n \right)^{-1}.$$

- maximum prediction error for RKHS elements
- ♦ noise variance

Pure Exploration Algorithm

Maximum variance reduction

Algorithm 1 Maximum Variance Reduction (MVR)

- 1: Initialization: k, \mathcal{X} , f, $\sigma_0^2(x) = k(x, x)$.
- 2: **for** $n = 1, 2, \dots, N$ **do**
- 3: $x_n = \operatorname{argmax}_{x \in \mathcal{X}} \sigma_{n-1}^2(x)$, where a tie is broken arbitrarily.
- 4: Update $\sigma_n^2(.)$ according to (2).
- 5: end for
- 6: Update $\mu_N(.)$ according to (2).
- 7: **return** $\hat{x}_N^* = \operatorname{argmax}_{x \in \mathcal{X}} \mu_N(x)$, where a tie is broken arbitrarily.

$$x_n = \arg\max_{x \in \mathcal{X}} \sigma_{n-1}^2(x)$$

Information Gain

 \diamond Mutual information between Y_n and f

$$\mathcal{I}(Y_n; f) = \log \det \left(I_n + \frac{1}{\lambda^2} k(X_n, X_n) \right)$$

- $\diamondsuit \mathcal{I}(Y_n; f) \sim \text{effective dimension of the kernel}$
- \diamond Maximal information gain γ_N

$$\gamma_N = \sup_{X_n \subset \mathcal{X}} \mathcal{I}(Y_n; f)$$

 \diamondsuit Matérn: $\gamma_N = \mathcal{O}\left(N^{\frac{d}{2\nu+d}}(\log(N))^{\frac{2\nu}{2\nu+d}}\right)$, Squared Exponential: $\gamma_N = \mathcal{O}\left((\log(N))^{d+1}\right)$ [Srinivas et al., 2010, Vakili et al., 2020]

Simple Regret of MVR

Theorem: Under Assumption 1 and (2 or 3), with probability at least $1 - \delta$

$$r_N^{\mathsf{MVR}} \leq \sqrt{\frac{2\gamma_N}{\log(1+\frac{1}{\lambda^2})N}} \left(2B + \beta(\frac{\delta}{3}) + \beta \left(\frac{\delta}{3C\left(B+\sqrt{N}\beta(2\delta/3N)\right)^d N^{d/2}}\right)\right) + \frac{2}{\sqrt{N}}.$$

- \diamondsuit Assumption 2: $\beta(\delta) = \frac{R}{\lambda} \sqrt{2 \log(\frac{1}{\delta})}$
- \Leftrightarrow Assumption 3: $\beta(\delta) = \frac{1}{\lambda} \sqrt{2\left(\xi_0 \vee \frac{2\log(\frac{1}{\delta})}{h_0^2}\right)\log(\frac{1}{\delta})}$

Simple Regret of MVR

♦ Assumption 2:

$$r_N^{\mathsf{MVR}} = \mathcal{O}(\sqrt{rac{\gamma_N \log(N^d/\delta)}{N}})$$

♦ Assumption 3:

$$r_N^{\mathsf{MVR}} = \mathcal{O}\left(\sqrt{rac{\gamma_N}{N}}\log(N^d/\delta)
ight)$$

 \diamond In the case of Matérn ν

$$r_N^{\mathsf{MVR}} = \mathcal{O}\left(N^{\frac{-\nu}{2\nu+d}}(\log(N))^{\frac{\nu}{2\nu+d}}\sqrt{\log(N^d/\delta)}\right)$$

$$r_N^{\mathsf{MVR}} = \mathcal{O}\left(N^{\frac{-\nu}{2\nu + d}}(\log(N))^{\frac{\nu}{2\nu + d}}\log(N^d/\delta)\right)$$

Sample Complexity

♦ Define

$$N_{\epsilon} = \min\{N \in \mathbb{N} : \mathbb{E}[r_n^{\mathsf{MVR}}] \le \epsilon, \forall n \ge N\}$$

♦ As a result of simple regret we have

Kernel	Under Assumption 2	Under Assumption 3
SE	$N_{\epsilon} = \mathcal{O}\left(\left(\frac{1}{\epsilon}\right)^2 \log\left(\frac{1}{\epsilon}\right)^{d+2}\right)$	$N_{\epsilon} = \mathcal{O}\left(\left(\frac{1}{\epsilon}\right)^2 \log\left(\frac{1}{\epsilon}\right)^{d+3}\right)$
Matérn- $ u$	$N_{\epsilon} = \mathcal{O}\left(\left(\frac{1}{\epsilon}\right)^{2 + \frac{d}{\nu}} \left(\log\left(\frac{1}{\epsilon}\right)^{\frac{4\nu + d}{2\nu}}\right)\right)$	$N_{\epsilon} = \mathcal{O}\left(\left(\frac{1}{\epsilon}\right)^{2 + \frac{d}{\nu}} \left(\log\left(\frac{1}{\epsilon}\right)^{\frac{6\nu + 2d}{2\nu}} \right) \right)$

♦ These bounds match the lower bounds given in Scarlett et al. [2017], up to log factors

Discussion and Open Problem

- \diamondsuit Recall our confidence interval width multiplier $B + \frac{R}{\lambda} \sqrt{2 \log(\frac{1}{\delta})}$
- \diamondsuit Chowdhury and Gopalan [2017]: $B + R\sqrt{2(\gamma_n + 1 + \log(\frac{1}{\delta}))}$
- \diamondsuit That results in $\mathcal{O}(\frac{\gamma_N}{\sqrt{N}})$ regret for typical algorithms such as GP-UCB and GP-TS (that is not always sublinear)
- Neither confidence intervals imply the other
- ♦ A tight analysis of GP-UCB and GP-TS in the RKHS setting remains an open problem [Vakili et al., 2021]

References

- S. R. Chowdhury and A. Gopalan. On kernelized multi-armed bandits. In *International Conference on Machine Learning*, pages 844–853, 2017.
- J. Scarlett, I. Bogunovic, and V. Cevher. Lower bounds on regret for noisy Gaussian process bandit optimization. In *Proceedings of the 2017 Conference on Learning Theory*, volume 65 of *Proceedings of Machine Learning Research*, pages 1723–1742, Amsterdam, Netherlands, 07–10 Jul 2017. PMLR.
- N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: no regret and experimental design. In *Proceedings of the 27th International Conference on International Conference on Machine Learning*, pages 1015–1022. Omnipress, 2010.
- S. Vakili, K. Khezeli, and V. Picheny. On information gain and regret bounds in gaussian process bandits. *arXiv preprint arXiv:2009.06966*, 2020.
- S. Vakili, J. Scarlett, and T. Javidi. Open problem: Tight online confidence intervals for rkhs elements. In *Conference on Learning Theory*, pages 4647–4652. PMLR, 2021.