Open Problem: Tight Online Confidence Intervals for RKHS Elements

Sattar Vakili, MediaTek Research, UK

Jonathan Scarlett, National University of Singapore

Tara Javidi, University of California, San Diego

COLT, August 19th, 2021

Introduction

- ◇ Kernel: an elegant technique to extend linear models to non-linear
 - ◇ GP-UCB [Srinivas et al., 2010], GP-TS [Chowdhury and Gopalan, 2017],
 GP-EI [Nguyen et al., 2017]
 - ♦ NeuralUCB [Zhou et al., 2020], NeuralTS [Zhang et al., 2021],
 - ♦ KOVI [Yang et al., 2020]
- ♦ Suboptimal regret bounds
- \diamond Likely reason: loose confidence intervals
- ◇ Main challenge: online nature of the observation points

Kernelized Bandit

 \diamond An online learning algorithm collects a sequence of noisy observations $\{(x_n, y_n)\}_{n=1}^{\infty}$

$$y_n = f(x_n) + \epsilon_n$$

♦ Performance measure:

$$\mathcal{R}(N) = \sum_{n=1}^{N} \left(f(x^*) - f(x_n) \right)$$

♦ Well-behaved noise: *R* sub-Gaussian

 \diamond Assumption: The RKHS norm of *f* is bounded

$$\|f\|_{\mathcal{H}_k} \le B.$$

 $\diamond A$ positive definite kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

 \diamond Reproducing kernel Hilbert space (RKHS) \mathcal{H}_k :

$$f \in \mathcal{H}_k \iff f(x) = \sum_{m=1}^{\infty} w_m \lambda_m^{\frac{1}{2}} \phi_m(x)$$

 $\|f\|_{\mathcal{H}_k} = \|\mathbf{w}\|_{l^2}$

Surrogate Gaussian Process Model

- \diamond A surrogate GP model *F*
- \diamond Prediction: $\mu_n(x) = \mathbb{E}[F(x)|\{(x_i, y_i)\}_{i=1}^n]$
- \diamond Uncertainty estimate: $\sigma_n^2(x) = \mathbb{E}\left[(F(x) \mu_n(x))^2 | \{(x_i, y_i)\}_{i=1}^n\right]$

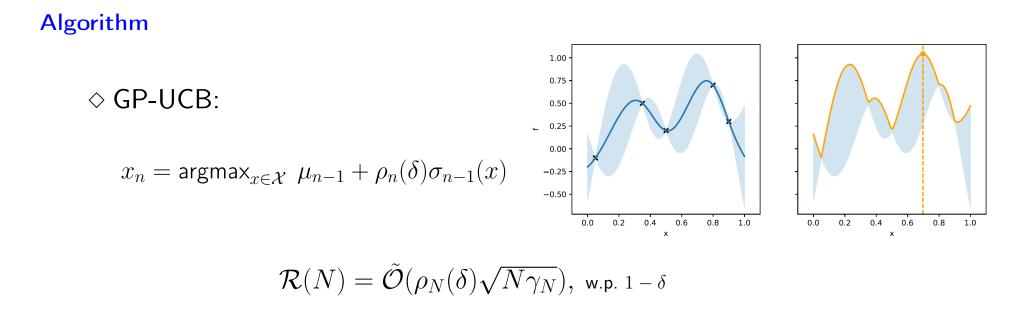
$$\boldsymbol{\mu}_n(\boldsymbol{x}) = \mathbf{k}_n^\top(\boldsymbol{x})(\lambda^2 \mathbf{I}_n + \mathbf{K}_n)^{-1} \mathbf{y}_n$$

$$\sigma_n^2(x) = k(x, x) - \mathbf{k}_n^\top(x)(\lambda^2 \mathbf{I}_n + \mathbf{K}_n)^{-1} \mathbf{k}_n(x),$$

•
$$\mathbf{k}_n(x) = [k(x, x_1), k(x, x_2), \dots, k(x, x_n)]^\top$$

•
$$[\mathbf{K}_n]_{i,j} = k(x_i, x_j)$$

Kernelized Bandit aka GP Bandit, Bayesian Optimization,



- -

$$\gamma_n = \sup_{\{\mathbf{x}_i\}_{i=1}^n \subset \mathcal{X}} \log \det(\mathbf{I}_n + \frac{\mathbf{K}_n}{\lambda^2})$$

Online Confidence Intervals for RKHS Elements

Theorem [Abbasi-Yadkori, 2013, Chowdhury and Gopalan, 2017]. When $||f||_{\mathcal{H}_k} \leq B$, in the online setting, with probability $1 - \delta$, for all $x \in \mathcal{X}$ $|f(x) - \mu_n(x)| \leq \rho_n(\delta)\sigma_n(x)$

•
$$\rho_n(\delta) = B + R \sqrt{2 \left(\gamma_{n-1} + 1 + \log(\frac{1}{\delta}) \right)}$$

• $\gamma_n = \sup_{\{\mathbf{x}_i\}_{i=1}^n \subset \mathcal{X}} \log \det(\mathbf{I}_n + \frac{\mathbf{K}_n}{\lambda^2})$

•
$$\gamma_n \sim D_{\text{eff},n}$$

Open Problem

Open Problem: When $||f||_{\mathcal{H}_k} \leq B$, in the online setting, consider confidence interval

$$|f(x)-\mu_n(x)|\leq
ho_n(\delta)\sigma_n(x)$$
 w.p. 1 – δ

 \diamond What is the lowest growth rate of $\rho_n(\delta)$ with *n*?

 \diamond Is it possible to reduce the confidence interval width by an $\tilde{\mathcal{O}}(\sqrt{\gamma_n})$ factor?

Regret Bounds

 $\diamond \mathsf{Regret} \ \mathsf{Bound}$

$$\mathcal{R}(N) = ilde{\mathcal{O}}(
ho_N(\delta)\sqrt{N\gamma_N}), ext{ w.p. } 1 - \delta$$

$$\diamond$$
 Replacing $\rho_N(\delta) \sim \sqrt{\gamma_N}$
 $\mathcal{R}(N) = \tilde{\mathcal{O}}\left(\gamma_N\sqrt{N}\right)$

 \diamond Trivial ($\mathcal{O}(N)$): Matérn ($\nu \leq d/2$), Laplace, NTK

Discussion

◇ Could the square root of the effective dimension of the kernel in the regret bound be traded off for a square root of the input dimension?

$$\sqrt{\gamma_N} \rightarrow \sqrt{d\log(N)}$$

 \diamond The resulting regret bound

$$\mathcal{R}(N) = \tilde{\mathcal{O}}(\sqrt{dN\gamma_N})$$

 \diamond SupKernelUCB [Valko et al., 2013]: $\mathcal{R}(N) = \tilde{\mathcal{O}}(\sqrt{N\gamma_N})$, when $|\mathcal{X}| < \infty$

 \diamond Discretization argument: contributing only $\mathcal{O}(\sqrt{d \log(N)})$ factor

Special Case of Linear Models

Theorem [Abbasi-Yadkori et al., 2011] When $f = \mathbf{w}^{\top} x$ and $\|\mathbf{w}\|_{l^2} \leq B$, in the online setting, with probability $1 - \delta$, for all $x \in \mathcal{X}$

$$|f(x) - \mu_n(x)| \le \rho_n(\delta)\sigma_n(x)$$

•
$$\rho_n(\delta) = B + \frac{R}{\lambda} \sqrt{\frac{d}{d} \log(\frac{1+n\bar{x}^2/\lambda^2}{\delta})}$$
 and $\bar{x} = \max_{x \in \mathcal{X}} \|x\|_{\ell^2}$

Special Case of Linear Models

Theorem [Abbasi-Yadkori et al., 2011] When $f = \mathbf{w}^{\top} x$ and $\|\mathbf{w}\|_{l^2} \leq B$, in the online setting, with probability $1 - \delta$, for all $x \in \mathcal{X}$

$$|f(x) - \mu_n(x)| \le \rho_n(\delta)\sigma_n(x)$$

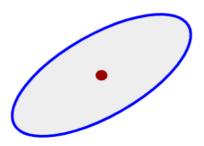
•
$$\rho_n(\delta) = B + \frac{R}{\lambda} \sqrt{\frac{d \log(\frac{1+n\bar{x}^2/\lambda^2}{\delta})}}$$
 and $\bar{x} = \max_{x \in \mathcal{X}} \|x\|_{\ell^2}$

 \diamond Self-normalized bound for vector valued martingales $S_n = \sum_{i=1}^n \epsilon_i x_i$

 \diamond Confidence ellipsoid for w:

$$\|\mathbf{w} - \hat{\mathbf{w}}_n\|_{V_n} \leq \lambda
ho_n(\delta)$$
 w.p. 1 – δ

•
$$V_n = \lambda^2 \mathbf{I}_d + \sum_{i=1}^n x_i x_i^\top$$



Online vs Offline Setting

- \diamond Online Setting: x_{n+1} is determined after $\{x_i, y_i\}_{i=1}^n$ are revealed
- \diamond Offline Setting: x_n is independent of all ϵ_i

Offline Confidence Intervals

 \diamond For a fixed $x \in \mathcal{X}$

$$\begin{split} |f(x)-\mu_n(x)| &\leq \rho_0(\delta)\sigma_n(x) \text{, w.p. } 1-\delta \\ \bullet \ \rho_0(\delta) &= B + \frac{R}{\lambda} \sqrt{2\log(\frac{2}{\delta})}. \end{split}$$

 \diamond When f is Lipschitz (or Hölder) continuous, uniformly in x,

$$|f(x) - \mu_n(x)| = \mathcal{O}\left(\left(B + \frac{R}{\lambda}\sqrt{d\log(n)} + \log(\frac{1}{\delta})\right)\sigma_n(x)\right)$$
 w.p. $1 - \delta$

References

- Y. Abbasi-Yadkori. Online learning for linearly parametrized control problems. 2013.
- Y. Abbasi-Yadkori, D. PI, and C. Szepesvri. Improved algorithms for linear stochastic bandits. In *Advances in Neural Information Processing Systems*, pages 2312–2320, 2011.
- S. R. Chowdhury and A. Gopalan. On kernelized multi-armed bandits. In *Proceedings of International Conference on Machine Learning*, pages 844–853, 2017.
- V. Nguyen, S. Gupta, S. Rana, C. Li, and S. Venkatesh. Regret for expected improvement over the best-observed value and stopping condition. In *Asian Conference on Machine Learning*, pages 279–294, 2017.
- N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: no regret and experimental design. In *International Conference on Machine Learning*, pages 1015–1022, 2010.

- M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini. Finite-time analysis of kernelised contextual bandits. In *Conference on Uncertainty in Artificial Intelligence*, pages 654–663, 2013.
- Z. Yang, C. Jin, Z. Wang, M. Wang, and M. Jordan. Provably efficient reinforcement learning with kernel and neural function approximations. In *Advances in Neural Information Processing Systems*, volume 33, 2020.
- W. Zhang, D. Zhou, L. Li, and Q. Gu. Neural Thompson sampling. In *International Conference on Learning Representations*, 2021.
- D. Zhou, L. Li, and Q. Gu. Neural contextual bandits with UCB-based exploration. In International Conference on Machine Learning, pages 11492–11502, 2020.