
1

Open Problem: Tight Online Confidence Intervals

for RKHS Elements

Sattar Vakili, MediaTek Research, UK

Jonathan Scarlett, National University of Singapore

Tara Javidi, University of California, San Diego

COLT, August 19th, 2021



2

Introduction

3 Kernel: an elegant technique to extend linear models to non-linear

3 GP-UCB [Srinivas et al., 2010], GP-TS [Chowdhury and Gopalan, 2017],

GP-EI [Nguyen et al., 2017]

3 NeuralUCB [Zhou et al., 2020], NeuralTS [Zhang et al., 2021],

3 KOVI [Yang et al., 2020]

3 Suboptimal regret bounds

3 Likely reason: loose confidence intervals

3 Main challenge: online nature of the observation points
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Kernelized Bandit

3 An online learning algorithm collects a sequence of noisy

observations {(xn, yn)}∞n=1

yn = f (xn) + εn

3 Performance measure:

R(N) =

N∑
n=1

(f (x∗)− f (xn))

3 Well-behaved noise: R sub-Gaussian

3 Assumption: The RKHS norm of f is bounded

‖f‖Hk
≤ B.
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Kernel-Based Models

3 A positive definite kernel k : X × X → R

3 Reproducing kernel Hilbert space (RKHS) Hk:

f ∈ Hk ⇐⇒ f (x) =
∑∞

m=1wmλ
1
2
mφm(x)

‖f‖Hk
= ‖w‖l2



5

Surrogate Gaussian Process Model

3 A surrogate GP model F

3 Prediction: µn(x) = E
[
F (x)|{(xi, yi)}ni=1

]
3 Uncertainty estimate: σ2

n(x) = E
[
(F (x)− µn(x))2|{(xi, yi)}ni=1

]

µn(x) = k>n (x)(λ2In + Kn)−1yn

σ2
n(x) = k(x, x)− k>n (x)(λ2In + Kn)−1kn(x),

• kn(x) = [k(x, x1), k(x, x2), . . . , k(x, xn)]>

• [Kn]i,j = k(xi, xj)
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Kernelized Bandit aka GP Bandit, Bayesian

Optimization,

Algorithm

3 GP-UCB:

xn = argmaxx∈X µn−1 + ρn(δ)σn−1(x)

R(N) = Õ(ρN(δ)
√
NγN), w.p. 1− δ

γn = sup{xi}ni=1⊂X
log det(In + Kn

λ2
)
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Online Confidence Intervals for RKHS Elements

Theorem [Abbasi-Yadkori, 2013, Chowdhury and Gopalan, 2017]. When

‖f‖Hk
≤ B, in the online setting, with probability 1− δ, for all x ∈ X

|f (x)− µn(x)| ≤ ρn(δ)σn(x)

• ρn(δ) = B + R
√

2
(
γn−1 + 1 + log(1

δ)
)

• γn = sup{xi}ni=1⊂X
log det(In + Kn

λ2
)

• γn ∼ Deff,n
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Open Problem

Open Problem: When ‖f‖Hk
≤ B, in the online setting, consider confi-

dence interval

|f (x)− µn(x)| ≤ ρn(δ)σn(x) w.p. 1− δ

3 What is the lowest growth rate of ρn(δ) with n?

3 Is it possible to reduce the confidence interval width by an Õ(
√
γn)

factor?
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Regret Bounds

3 Regret Bound

R(N) = Õ(ρN(δ)
√
NγN), w.p. 1− δ

3 Replacing ρN(δ) ∼ √γN

R(N) = Õ
(
γN
√
N
)

3 Trivial (O(N)): Matérn (ν ≤ d/2), Laplace, NTK
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Discussion

3 Could the square root of the effective dimension of the kernel in the

regret bound be traded off for a square root of the input dimension?

√
γN →

√
d log(N)

3 The resulting regret bound

R(N) = Õ(
√
dNγN)

3 SupKernelUCB [Valko et al., 2013]: R(N) = Õ(
√
NγN), when |X | <∞

3 Discretization argument: contributing only O(
√
d log(N)) factor
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Special Case of Linear Models

Theorem [Abbasi-Yadkori et al., 2011] When f = w>x and ‖w‖l2 ≤ B , in

the online setting, with probability 1− δ, for all x ∈ X

|f (x)− µn(x)| ≤ ρn(δ)σn(x)

• ρn(δ) = B + R
λ

√
d log(1+nx̄2/λ2

δ ) and x̄ = maxx∈X ‖x‖`2
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Special Case of Linear Models

Theorem [Abbasi-Yadkori et al., 2011] When f = w>x and ‖w‖l2 ≤ B , in

the online setting, with probability 1− δ, for all x ∈ X

|f (x)− µn(x)| ≤ ρn(δ)σn(x)

• ρn(δ) = B + R
λ

√
d log(1+nx̄2/λ2

δ ) and x̄ = maxx∈X ‖x‖`2

3 Self-normalized bound for vector valued martingales Sn =
∑n

i=1 εixi

3 Confidence ellipsoid for w:

‖w − ŵn‖Vn ≤ λρn(δ) w.p. 1− δ

• Vn = λ2Id +
∑n

i=1 xix
>
i
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Online vs Offline Setting

3 Online Setting: xn+1 is determined after {xi, yi}ni=1 are revealed

3 Offline Setting: xn is independent of all εi
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Offline Confidence Intervals

3 For a fixed x ∈ X

|f (x)− µn(x)| ≤ ρ0(δ)σn(x), w.p. 1− δ

• ρ0(δ) = B + R
λ

√
2 log(2

δ).

3 When f is Lipschitz (or Hölder) continuous, uniformly in x,

|f (x)− µn(x)| = O
((
B + R

λ

√
d log(n) + log(1

δ)
)
σn(x)

)
w.p. 1− δ
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