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Overview

3 Thompson Sampling (TS) is a classical statistical learning method

(1933, Thompson)

3 Sample from the current belief

3 Efficient sample complexity

3 Sampling from approximate distribution for computational reasons

3 That may invalidate performance guarantees [Phan et al., 2019]

3 Our contribution: complete analytical and empirical study of a

scalable TS using sparse approximation of GP models
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Problem Formulation

3 Consider an objective function f : X → R, X ⊂ Rd

3 A sequential learning policy selects a batch {xt,b}b∈[B] of observations

at each time t = 1, 2, . . .

3 Recieves noisy evaluation of f : yt,b = f (xt,b) + εt,b

3 Objective: minimize regret

R(T,B; f ) = E
[∑T

t=1

∑B
b=1 f (x∗)− f (xt,b)

]
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Regularity Assumptions

3 Assumption 1: The function f is in the reproducing kernel Hilbert

space (RKHS) of a positive definite kernle k

||f ||Hk ≤ B

3 Assumption 2: εt,b are independent R−sub-Gaussian random variables

E[ehεt,b] ≤ exp(h
2R2

2 ), ∀h ∈ R,∀t, b ∈ N.

3 We provide our regret bounds under these two assumptions.
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Surrogate Gaussian Process Model

3 Provided data Ht = {Xt,yt}

3 A surrogate GP model provides us with a posterior mean and

covariance

µt(x) = k>Xt,x
(KXt,Xt + τI)−1yt

kt(x, x
′) = k(x, x′)− k>Xt,x

(KXt,Xt + τI)−1kXt,x′

3 we may use this posterior distribution to sample from
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Computational Complexity and Approximations

3 TS using GP models has two computational bottlenecks

3 O(tB)3 computational complexity of the posterior distribution (matrix

inverse)

3 O(N 3) computational complexity of a joint sample on N points

(Cholesky decomposition)

3 These two can be resolved, respectively, by sparse variational GP

(SVGP) [Titsias, 2009] and decoupled sampling [Wilson et al., 2020]

3 Both methods introduce approximation errors which need careful

treatment to guarantee performance
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SVGP

3 Inducing points Zt = {z1, ..., zmt}

3 Inducing variables ut = f̂ (Zt)

3 A prior Gaussian density qt(ut) = N (mt,St)

µ
(s)
t (x) = k>Zt,xK

−1
Zt,Zt

mt

k
(s)
t (x, x′) = k(x, x′) + k>Zt,xK

−1
Zt,Zt

(St −KZt,Zt)K
−1
Zt,Zt

kZt,x′

3 Computational complexity:

O((tB)3) → O(tbm2
t )
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SVGP with inducing features

3 Inducing variables can be also be given with respect to integral

transforms of f̂ : ut,i =
∫
X f̂ (x)ψi(x)dx

3 We choose the inducing features as the Mercer eigenfunctions of k

3 Approximate posterior

µ
(s)
t (x) = φ>mt

(x)mt

k
(s)
t (x, x′) = k(x, x′) + φ>mt

(x)(St − Λmt)φmt(x
′)

• φm(x) , [φ1(x), ..., φm(x)]T
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Decoupled Sampling with Inducing Points

3 Sample from prior plus the effect of data [Wilson et al., 2020]

3 Sample from prior: using truncated feature representations

f̂ (x) =
∑∞

j=1

√
λjwjφj(x)

f̂ (x) =
∑M

j=1

√
λjwjφj(x)

3 The effect of data: using SVGP
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Scalable Thompson Sampling

3 In addition to the decoupled sampling of Wilson et al. [2020], we

scale the posterior variance with αt, to ensure sufficient exploration

f̃t(x) =
∑M

j=1 αt
√
λjwjφj(x) +

∑mt
j=1 vt,jk(x, zj)

3 vt,j = [K−1Zt,Zt
(αt(ut −mt) + mt − αtΦmt,MΛ

1
2
MwM)]j

3 Φmt,M = [φM(z1), ...,φM(zmt)]
T

3 wM = [w1, ..., wM ]T, wi ∼ N (0, 1)

3 Computational complexity:

O(N 3) → O((mt + M)BN)
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Scalable Thompson Sampling (inducing features)

3 In addition to the decoupled sampling of Wilson et al. [2020], we

scale the posterior variance with αt, to ensure sufficient exploration

f̃t(x) =
∑M

j=1 αt
√
λjwjφj(x) +

∑mt
j=1 vt,jλjφj(x)

3 vt,j = [Λ−1mt
(αt(ut −mt) + mt − αtΛ

1
2
mtwmt)]j

3 Λmt is the diogonal matrix of eigenvalues
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Regret Performance of Vanilla GP-TS

3 For vanilla GP-TS Chowdhury and Gopalan [2017]:

R(T ;F ) = Õ(γT
√
T )

3 γs = maxA⊂X ,|A|=s I([y(x)]x∈A; [f̂ (x)]x∈A)

3 Mutual information: I([y(x)]x∈A; [f̂ (x)]x∈A)

3 Mutual information is closely related to the effective dimension of

the kernel

3 Matérn: γT = O
(
T

d
2ν+d(log(T ))

2ν
2ν+d

)
,

Squared Exponential: γT = O
(
(log(T ))d+1

)
[Srinivas et al., 2010, Vakili

et al., 2021]
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Setting Up Our Theorem

3 Assumption 3: quality of the approximate standard deviation

1
aσt(x)− ε ≤ σ̃t(x) ≤ āσt(x) + ε

3 Assumption 4: quality of the approximate prediction

|µ̃t(x)− µt(x)| ≤ cσt(x)

3 We show that this conditions are satisfied with proper parameters mt

and M

3 The additive error in σ̃t(x) in particular makes the analysis challenging
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Regret Bound for S-GP-TS

Theorem: S-GP-TS with αt = 2ũt(1/(t2)), Under Assumptions 1,2,3 and 4,

satisfies

R(T ; f ) = O(aāBR
√
dγT (γTB + log(T ))T log(T ) +

aεTBR
√
d(γTB + log(T )) log(T ))

3 ũt(δ), is a confidence interval width multiplier

ũt(δ) = at

(
B + R

√
2(γtB + 1 + log(1/δ)) + ct

)
3 That is with probability at least 1− δ,

|f (x)− µ̃t(x)| ≤ ũt(σ̃t(x) + εt)
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Regret Bound for S-GP-TS

Theorem Under assumptions 1 and 2, with parameters given in the table,

S-GP-TS offers

R(T,B; f ) = O(B
√
γTγTBT log(T ))

Inducing points Inducing features

M
at

ér
n Condition mt ∼ T

2d
2ν−d , M ∼ T

(2ν+d)d
2(2ν−d)ν mt ∼ T

d
2ν , M ∼ T

(2ν+d)d

4ν2

Cost O

(
BNTT

4ν2+d2

2(2ν−d)ν +BT 2 min{T
4d

2ν−d , T 2}
)

O

(
BNTT

(2ν+d)2−2νd

4ν2 +BT
2ν+d
ν

)

S
E Condition mt,M ∼ (log(T ))d mt,M ∼ (log(T ))d

Cost O
(
BNTT logd(T ) +BT 2 log2d(T )

)
O
(
BNTT logd(T ) +BT 2 log2d(T )

)
3 with B = 1, the same regret bound as exact GP-TS is recovered
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Experiments

3 Experiments on benchmark functions: Shekel and Hartmann

3 Experiments on a high throughput molecular screening problem

3 Our implementation is based on gpflow and gpflux for modeling and

trieste for BO
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Experiments on Benchmark Functions

3 Shekel (4D, left) and Hartmann (6D, right)
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Experiments on Molecular Screening

3 S-GP-TS performs comparable to the established baseline of

Bayesian NNs
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