Scalable Thompson Sampling using Sparse Gaussian Process Models

Sattar Vakili*, **Henry Moss**⁺, *Artem Artemev*⁺, *Vincent Dutordoir*⁺, *Victor Picheny*⁺

*MediaTek Research, UK

⁺Secondmind Labs, UK

Neurips 2021

Overview

- ◇ Thompson Sampling (TS) is a classical statistical learning method (1933, Thompson)
- \diamond Sample from the current belief
- \diamond Efficient sample complexity
- \diamond Sampling from approximate distribution for computational reasons
- ◇ That may invalidate performance guarantees [Phan et al., 2019]
- ◇ Our contribution: complete analytical and empirical study of a scalable TS using sparse approximation of GP models

Problem Formulation

- \diamond Consider an objective function $f : \mathcal{X} \to \mathbb{R}$, $\mathcal{X} \subset \mathbb{R}^d$
- \diamond A sequential learning policy selects a batch $\{x_{t,b}\}_{b\in[B]}$ of observations at each time t = 1, 2, ...
- \diamond Recieves noisy evaluation of f: $y_{t,b} = f(x_{t,b}) + \epsilon_{t,b}$
- ♦ Objective: minimize *regret*

$$R(T, B; f) = \mathbb{E}\left[\sum_{t=1}^{T} \sum_{b=1}^{B} f(x^*) - f(x_{t,b})\right]$$

 \diamond Assumption 1: The function *f* is in the reproducing kernel Hilbert space (RKHS) of a positive definite kernle *k*

 $||f||_{H_k} \leq \mathcal{B}$

 \diamond Assumption 2: $\epsilon_{t,b}$ are independent *R*-sub-Gaussian random variables

$$\mathbb{E}[e^{h\epsilon_{t,b}}] \le \exp(\frac{h^2 R^2}{2}), \ \forall h \in \mathbb{R}, \forall t, b \in \mathbb{N}.$$

 \diamond We provide our regret bounds under these two assumptions.

Surrogate Gaussian Process Model

- \diamond Provided data $\mathcal{H}_t = \{\mathbf{X}_t, \mathbf{y}_t\}$
- ♦ A surrogate GP model provides us with a posterior mean and covariance

$$\mu_t(x) = k_{\mathbf{X}_t,x}^\top (K_{\mathbf{X}_t,\mathbf{X}_t} + \tau \mathbf{I})^{-1} \mathbf{y}_t$$

$$k_t(x, x') = k(x, x') - k_{\mathbf{X}_t, x}^\top (K_{\mathbf{X}_t, \mathbf{X}_t} + \tau \mathbf{I})^{-1} k_{\mathbf{X}_t, x'}$$

 \diamond we may use this posterior distribution to sample from

Computational Complexity and Approximations

- ♦ TS using GP models has two computational bottlenecks
- $\diamond O(tB)^3$ computational complexity of the posterior distribution (matrix inverse)
- $\diamond O(N^3)$ computational complexity of a joint sample on N points (Cholesky decomposition)
- These two can be resolved, respectively, by sparse variational GP (SVGP) [Titsias, 2009] and decoupled sampling [Wilson et al., 2020]
- Both methods introduce approximation errors which need careful treatment to guarantee performance

SVGP

- \diamond Inducing points $\mathbf{Z}_t = \{z_1, ..., z_{m_t}\}$
- \diamond Inducing variables $\mathbf{u}_t = \hat{f}(\mathbf{Z}_t)$
- $\diamond A$ prior Gaussian density $q_t(\mathbf{u}_t) = \mathcal{N}(\mathbf{m}_t, \mathbf{S}_t)$

$$\mu_t^{(s)}(x) = k_{\mathbf{Z}_t,x}^{\top} K_{\mathbf{Z}_t,\mathbf{Z}_t}^{-1} \mathbf{m}_t$$
$$k_t^{(s)}(x, x') = k(x, x') + k_{\mathbf{Z}_t,x}^{\top} K_{\mathbf{Z}_t,\mathbf{Z}_t}^{-1} (\mathbf{S}_t - K_{\mathbf{Z}_t,\mathbf{Z}_t}) K_{\mathbf{Z}_t,\mathbf{Z}_t}^{-1} k_{\mathbf{Z}_t,x'}$$

♦ Computational complexity:

$$\mathcal{O}((tB)^3) \rightarrow \mathcal{O}(tbm_t^2)$$

SVGP with inducing features

- \diamond Inducing variables can be also be given with respect to integral transforms of \hat{f} : $u_{t,i} = \int_{\mathcal{X}} \hat{f}(x)\psi_i(x)dx$
- \diamond We choose the inducing features as the Mercer eigenfunctions of k

 \diamond Approximate posterior

$$\mu_t^{(s)}(x) = \boldsymbol{\phi}_{m_t}^{\top}(x)\mathbf{m}_t$$

$$k_t^{(s)}(x, x') = k(x, x') + \boldsymbol{\phi}_{m_t}^{\top}(x)(\mathbf{S}_t - \Lambda_{m_t})\boldsymbol{\phi}_{m_t}(x')$$

• $\boldsymbol{\phi}_m(x) \triangleq [\phi_1(x), ..., \phi_m(x)]^{\top}$

Decoupled Sampling with Inducing Points

- ♦ Sample from prior plus the effect of data [Wilson et al., 2020]
- \diamond Sample from prior: using truncated feature representations

$$\hat{f}(x) = \sum_{j=1}^{\infty} \sqrt{\lambda_j} w_j \phi_j(x)$$
$$\hat{f}(x) = \sum_{j=1}^{M} \sqrt{\lambda_j} w_j \phi_j(x)$$

 \diamond The effect of data: using SVGP

Scalable Thompson Sampling

 \diamond In addition to the decoupled sampling of Wilson et al. [2020], we scale the posterior variance with α_t , to ensure sufficient exploration

$$\tilde{f}_t(x) = \sum_{j=1}^M \alpha_t \sqrt{\lambda_j} w_j \phi_j(x) + \sum_{j=1}^{m_t} v_{t,j} k(x, z_j)$$

$$\diamond v_{t,j} = [K_{\mathbf{Z}_t,\mathbf{Z}_t}^{-1}(\alpha_t(\mathbf{u}_t - \mathbf{m}_t) + \mathbf{m}_t - \alpha_t \mathbf{\Phi}_{m_t,M} \Lambda_M^{\frac{1}{2}} \mathbf{w}_M)]_j$$

$$\diamondsuit \mathbf{\Phi}_{m_t,M} = [\boldsymbol{\phi}_M(z_1), ..., \boldsymbol{\phi}_M(z_{m_t})]^{\mathsf{T}}$$

$$\diamond \mathbf{w}_M = [w_1, ..., w_M]^{\mathsf{T}}, \ w_i \sim \mathcal{N}(0, 1)$$

♦ Computational complexity:

$$\mathcal{O}(N^3) \rightarrow \mathcal{O}((m_t + M)BN)$$

Scalable Thompson Sampling (inducing features)

 \diamond In addition to the decoupled sampling of Wilson et al. [2020], we scale the posterior variance with α_t , to ensure sufficient exploration

$$\tilde{f}_t(x) = \sum_{j=1}^M \alpha_t \sqrt{\lambda_j} w_j \phi_j(x) + \sum_{j=1}^{m_t} v_{t,j} \lambda_j \phi_j(x)$$

$$\diamond v_{t,j} = [\Lambda_{m_t}^{-1}(\alpha_t(\mathbf{u}_t - \mathbf{m}_t) + \mathbf{m}_t - \alpha_t \Lambda_{m_t}^{\frac{1}{2}} \mathbf{w}_{m_t})]_j$$

 $\Diamond \Lambda_{m_t}$ is the diogonal matrix of eigenvalues

 \diamond For vanilla GP-TS Chowdhury and Gopalan [2017]: $R(T;F) = \tilde{\mathcal{O}}(\gamma_T \sqrt{T})$

$$\diamond \gamma_s = \max_{A \subset \mathcal{X}, |A|=s} \mathcal{I}([y(x)]_{x \in A}; [\hat{f}(x)]_{x \in A})$$

- \diamond Mutual information: $\mathcal{I}([y(x)]_{x \in A}; [\hat{f}(x)]_{x \in A})$
- Outual information is closely related to the effective dimension of the kernel
- $\Leftrightarrow \text{Matérn: } \gamma_T = \mathcal{O}\left(T^{\frac{d}{2\nu+d}}(\log(T))^{\frac{2\nu}{2\nu+d}}\right),$ Squared Exponential: $\gamma_T = \mathcal{O}\left((\log(T))^{d+1}\right)$ [Srinivas et al., 2010, Vakili et al., 2021]

Setting Up Our Theorem

♦ Assumption 3: quality of the approximate standard deviation

$$\frac{1}{\underline{a}}\sigma_t(x) - \epsilon \le \tilde{\sigma}_t(x) \le \bar{a}\sigma_t(x) + \epsilon$$

♦ Assumption 4: quality of the approximate prediction

$$|\tilde{\mu}_t(x) - \mu_t(x)| \le c\sigma_t(x)$$

- \diamond We show that this conditions are satisfied with proper parameters m_t and M
- \diamond The additive error in $\tilde{\sigma}_t(x)$ in particular makes the analysis challenging

Regret Bound for S-GP-TS

Theorem: S-GP-TS with $\alpha_t = 2\tilde{u}_t(1/(t^2))$, Under Assumptions 1,2,3 and 4, satisfies

$$R(T; f) = \mathcal{O}(\underline{a}\overline{a}BR\sqrt{d\gamma_T(\gamma_{TB} + \log(T))T\log(T)} - \underline{a}\epsilon TBR\sqrt{d(\gamma_{TB} + \log(T))\log(T)})$$

 $\diamond \tilde{u}_t(\delta)$, is a confidence interval width multiplier

$$\tilde{u}_t(\delta) = \underline{a}_t \left(\mathcal{B} + R\sqrt{2(\gamma_{tB} + 1 + \log(1/\delta))} + c_t \right)$$

 \diamond That is with probability at least $1 - \delta$,

$$|f(x) - \tilde{\mu}_t(x)| \le \tilde{u}_t(\tilde{\sigma}_t(x) + \epsilon_t)$$

Regret Bound for S-GP-TS

Theorem Under assumptions 1 and 2, with parameters given in the table, S-GP-TS offers

$$R(T, B; f) = O(B\sqrt{\gamma_T \gamma_T B}T \log(T))$$

 \diamond with B = 1, the same regret bound as exact GP-TS is recovered

Experiments

- ♦ Experiments on benchmark functions: Shekel and Hartmann
- ♦ Experiments on a high throughput molecular screening problem
- ♦ Our implementation is based on *gpflow* and *gpflux* for modeling and *trieste* for BO

Experiments on Benchmark Functions

♦ Shekel (4D, left) and Hartmann (6D, right)

Experiments on Molecular Screening

♦ S-GP-TS performs comparable to the established baseline of Bayesian NNs

References

- S. R. Chowdhury and A. Gopalan. On kernelized multi-armed bandits. In *International Conference on Machine Learning*, pages 844–853, 2017.
- M. Phan, Y. Abbasi Yadkori, and J. Domke. Thompson sampling and approximate inference. In *Advances in Neural Information Processing Systems 32*, pages 8804–8813. Curran Associates, Inc., 2019.
- N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: no regret and experimental design. In *Proceedings of the 27th International Conference on International Conference on Machine Learning*, pages 1015–1022. Omnipress, 2010.
- M. K. Titsias. Variational Learning of Inducing Variables inSparse Gaussian Processes. In *Proceedings of the International Conference on Artificial Intelligence and Statistics*, pages 567–574, 2009.
- S. Vakili, K. Khezeli, and V. Picheny. On information gain and regret

bounds in gaussian process bandits. In International Conference on Artificial Intelligence and Statistics, pages 82–90. PMLR, 2021.

J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth. Efficiently sampling functions from gaussian process posteriors. *arXiv preprint arXiv:2002.09309*, 2020.