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Abstract—This paper studies distributed formation of femto-clouds in a UMTS LTE network. Femtocell access points (FAPs) are
equipped with computational resources. They share their resources with neighboring FAPs and form local clouds with the aim to avoid
the remote cloud costs while improving the user quality of experience (QoE) in terms of handling latency. In exchange for sharing their
excess resources, FAPs receive monetary incentives proportional to their contribution in performing computational tasks in the
femto-cloud. The resource sharing problem is formulated as an optimization problem and a myopic procedure is presented that
enables FAPs to collaboratively find its solution in a distributed fashion. In such an optimal femto-cloud structure, the local
computational resources of FAPs are maximally exploited, yet the incentive earned by each femto-cloud is divided among the FAPs in
a fair fashion. Numerical simulations using NS-3 verify superior QoE of users as well as higher incentives provided to FAP owners as
compared with alternative heuristic schemes. Numerical results also show that the grand femto-cloud—the largest collaborative cloud
comprising of all FAPs—is not always the optimal structure.

Index Terms—Mobile cloud computing, femto-clouds, distributed coalition formation, cooperative game theory.
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1 INTRODUCTION

TO INCREASE semantic richness of the sensed data in
the personal assistant applications such as Apple Siri,

Google Now, and Microsoft’s Cortana, high data rate sen-
sors such as vision-based sensors are required [1]. Analyz-
ing real-time video and images captured by such sensors,
however, requires intensive computational capacity, which
makes it costly (in terms of energy consumption) to be
processed in mobile devices. Therefore, offloading-based
mechanisms have been developed to support vision-based
functionalities [1], [2], [3].

One such solution is mobile cloud computing (MCC) [4]
that augments the computational capacity of mobile devices
by offloading computation and storage to a remote cloud.
The interactive response essential for real-time video/image
processing is, however, limited by two major bottlenecks in
MCC, namely, energy consumption and latency [2], [5], [6],
[7]. Therefore, the concept of cloudlet has been introduced
in [2]: A trusted local cloud comprised of multi-core com-
puters that is connected to the Internet and is available
for use within the proximity of mobile users. Mobile de-
vices use Wi-Fi network to offload the computation tasks
to the cloudlet, which saves them considerable amount of
energy as compared to offloading over the 3G/Long Term
Evolution (LTE) cellular network to remote cloud [3], [8].
This prolongs the battery lifetime of mobile devices and, by
reducing network latency, improves user’s quality of expe-
rience (QoE) [9]. In a European project, namely, TROPIC [7],
the cloudlet has further been integrated into small-cell ac-
cess points, such as femtocell access points (FAPs) [6], [7],
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[9], to perform computations on behalf of mobile devices.
The advantage is that femtocells, in contrast to Wi-Fi, work
under the same communication standard as the LTE cellular
network.

The main idea in this work is to allow FAPs augmented
with computational resources to cooperate with each other
and form local computational pools, namely, femto-clouds.
FAPs share the computational resources exceeding their de-
mands in femto-clouds. Therefore, by maximally exploiting
FAPs’ local resources, such femto-clouds reduce latency1

and, hence, improve end-user QoE. We assume that FAPs
are deployed by different residential users. To motivate
FAP owners to share their excess resources, it is natural to
assume an incentive mechanism. The maximal use of FAP
resources then translates into both lower handling latency
and higher incentives to FAP owners. The question that
this paper focuses on is then: How should FAPs decide on
formation of such femto-clouds in a distributed fashion?

The data transfer delay and limited computational ca-
pacity of FAPs impose stringent constraints that naturally
prohibit formation of the grand coalition to which all FAPs
join, namely, grand femto-cloud. Since offloading tasks to
other FAPs within a femto-cloud incurs delay, it is not bene-
ficial to collaborate with FAPs that are far away. On the other
hand, the computation tasks exceeding the computational
capacity of the femto-clouds have to be transported to the re-
mote cloud. This incurs both data transfer delay and remote
cloud costs. If such a cost exceeds the associated incentives,
all FAPs within the femto-cloud will be responsible for the
loss. Formation of the grand femto-cloud produces a huge
pool of tasks, and increases the probability of such losses.
Therefore, FAPs form femto-clouds in a way to minimize
tasks that are needed to be transported to the remote cloud.

1. Latency can be formulated as the sum of computational delay and
data transfer delay.
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The proposed femto-cloud formation scheme identifies such
optimal localized femto-clouds, to which only a subset of
FAPs subscribe, in a distributed fashion.

The main results in this paper are:
1) Formulation of the incentive-based femto-cloud

formation problem: The resource sharing problem is for-
mulated as an optimization problem with the objective to
maximize the overall utility of all femto-clouds with con-
straints on the fair division of incentives among individual
FAPs within a femto-cloud. The utility function of each
femto-cloud takes into account the profile of request arrivals
in individual femtocells, previous cooperative behavior of
FAPs, data transfer delay, and computational capacity of
FAPs to determine the overall incentive available to each
femto-clouds. Therefore, solving the formulated problem
translates into finding the femto-cloud structure that max-
imizes utilization of FAPs’ local resources (taking into ac-
count users’ experience), yet provides incentives to FAPs
for sharing their resources such that no FAP is willing to
give up collaboration within its current femto-cloud to join
another femto-cloud.

2) Distributed femto-cloud formation algorithm: The
similarities between the formulated femto-cloud formation
problem and coalition formation games enable us to employ
the dynamic coalition formation algorithm in [10] to devise
a procedure that prescribes individual FAPs how to revise
their decisions as to which femto-cloud to join so as to reach
the solution of formulated problem (i.e., core of the under-
lying coalition formation game) in a distributed fashion.

3) Numerical results: Finally, numerical simulations
implemented on the LTE protocol stack in NS-3 illustrate su-
perior performance of the proposed scheme in terms of both
handling latency and incentives provided to FAP owners
over alternative heuristic femto-cloud formation schemes.
They further confirm that forming a grand femto-cloud,
comprising of all FAPs in the network, is not always the
optimal choice.

The material presented in the current paper extends the
conference version [11] in several respects:

1) Problem formulation: The formulation in Sec. 3
extends that in [11] by considering the task request variabil-
ity as well as a trust parameter that captures the previous
collaboration performance of individual FAPs. This paper
further considers task request statistics instead of its distri-
bution which is more realistic to monitor in practice.

2) Implementation considerations: Section 4.2 has
been added to shed light on the details crucial to implement-
ing the proposed distributed femto-cloud formation scheme.

3) Simulation results: The numerical results sub-
stantially extends those in [11] by considering different
task types handled simultaneously and various scenarios
to better evaluate its efficacy. Finally, to better illustrate the
performance gains achievable from the proposed scheme,
the simulations are performed on a larger network.

1.1 Related Work

Here, we provide a brief description of relevant works in
the literature.

1.1.1 Collaboration among cloud providers

There is a large body of research devoted to studying coop-
eration in cloud computing framework; see, e.g., [12], [13],
[14]. Cooperation among mobile cloud service providers is
studied in [12] for pooling computational resources with the
goal to maximize revenue. The authors then use Shapley
value to distribute the revenue among the collaborating
cloud service providers. In [15], a cooperative outsourcing
strategy is proposed which prescribes the providers whether
to satisfy users’ requests locally or to outsource to a certain
provider. Dynamic cloud federation formation is also stud-
ied in [16].

1.1.2 Collaboration among femtocells

Coalition formation in femtocell network has been exten-
sively studied in the literature; see, e.g., [17], [18], [19]. For
instance, [20] studies coalition formation among femtocells
in order to mitigate interference in the network. In [19], an
interference management model is developed in a femtocell
network wherein the cooperation problem is formulated as
a coalition formation game with overlapping conditions.
Rami et al. [21] also consider resource and power allocation
in cooperative femtocell networks. All these works consider
cooperation among femtocells with the aim to improve
physical-layer throughput.

1.1.3 Incentives for cooperation in femtocell network

Femtocells are typically deployed by mobile network oper-
ators in an open/hybrid access mode, in which FAPs are
willing to accommodate guest users; see, e.g., [22], [23],
[24], [25]. To motivate FAP owners to adopt such an access
mode, several incentive schemes have been studied in the
literature, e.g., [22], [23], [24], [25], [26], [27]. Incentives can
be categorized as reputation or remuneration [28]. Reputation
reflects the willingness of wireless nodes’ to cooperate with
other nodes. Nodes receive services from other nodes based
on their past behavior—misbehaving nodes are deprived
from receiving services. In contrast, remuneration-based
mechanisms provide monetary incentives for cooperation,
e.g., micropayment, virtual currency, E-cash, and credit
transfer [29], [30], [31], [32].

1.1.4 Femto-clouds

Femto-clouds are relatively recent and only few studies can
be found in the literature. For instance, [9] proposes a mech-
anism for joint optimization of communication and compu-
tational resources. In [6], [33], [34], an offloading strategy
is proposed for femto-clouds. All these works consider the
cloud offloading mechanism while assuming that FAPs are
already grouped into coalitions. Femto-clouds differ sub-
stantially from cloud radio access networks (CRAN) [35] in
that FAPs are endowed with computational resources and
the offloaded computations are preferred to be performed
locally rather than in a centralized cloud (e.g. remote radio
head in CRAN) to reduce handling latency.

Jessica et al. propose cluster formation strategies in [36]
to handle a single user’s requests in femto-clouds. These
strategies are devised with different objectives, e.g., to min-
imize the experienced latency or to reduce power consump-
tion in the cluster. This work is extended to a multi-user
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Fig. 1. A typical femto-cloud architecture. The macrocell and femtocell
base stations are referred to as eNode-B and femtocell access point
(FAP), respectively, and the end users are referred to as user equipment
(UE). FAPs are connected to their closest femtocell cloud manager
(FCM) via the Z interface while FCM is linked with the remote cloud via
optical fiber/ethernet. The FAPs are also connected to the neighbouring
FAPs via the Z interface.

scenario in [37] where clusters are formed for each unserved
request according to the strategies proposed in [36]. Their
model, however, is suitable only for enterprise femtocell
environments where all FAPs share their computational
resources with each other. Moreover, cluster formation for
each unserved request significantly increases the signaling
overhead. To the best of our knowledge, the formulation
and distributed scheme proposed in this paper for forma-
tion of femto-clouds considering a remuneration incentive
mechanism and taking into account the delay involved in
migrating tasks between FAPs have not been studied before.

The rest of this paper is organized as follows: System
architecture is described in Sec. 2. The utility function is
defined in Sec. 3. The distributed femto-cloud formation
algorithm is presented in Sec. 4. Numerical studies are
provided in Sec. 5. Finally, Sec. 6 concludes the paper.

2 SYSTEM ARCHITECTURE

We consider a UMTS LTE architecture with K FAPs/Home
eNode-Bs (HeNBs) endowed with heterogeneous computa-
tional capacity. Each FAP is located in a separate room and
possibly different floor of a multi-story building. The FAPs
share bandwidth with a macro base station (BS) as shown in
Fig. 1, and are deployed by different residential users.

We assume that there exist N
F

femtocell cloud man-
agers (FCMs) in the building, where N

F

< K. The FAPs are
connected to their closest FCMs via Z interface according to
the proposed standalone FCM architecture in [7]. FCMs are
responsible for:

(i) gathering task request information of the connected
FAPs, and exchanging this information with neigh-
boring FCMs;

(ii) implementing the incentive mechanism by monitor-
ing the tasks completed by each FAP;

(iii) performing computations for the femto-cloud for-
mation mechanism proposed in this paper.

TABLE 1
Notations and Terminology

System
Parameters Description

K Number of FAPs
N

F

Number of FCMs
R

k

Trust/reputation value of FAP k

dmax

k

Computational capacity of FAP k

Dmax

C Overall computational capacity of femto-cloud C
b
k,l

Uplink data transmission rate from FAP k to FAP l

b
k

Uplink data transmission rate from FAP k to FCM
L WAN latency for sending tasks to remote cloud

Task
Request Description

N
B

Data size
d
k

Sample mean of task requests received by FAP k

DC Sample mean of task requests in femto-cloud C
HC Entropy of total task requests in femto-cloud C

Utility
Function Description

m
r

Revenue per unit task
m

p

Proportionality constant for trust
c
r

Remote cloud charges per unit task
c
o

Remote cloud offloading delay cost
c
u

Penalty for demand uncertainty

FCMs are connected to the remote cloud via optical fiber
links, hence, can offload the computational tasks of the
connected FAPs to the remote cloud with no intervention of
the core network. The FCMs substantially reduce the traffic
generated by the MCC in the core network. It is therefore
natural to assume that FCMs are installed and maintained
by the mobile network operators.

It is assumed that FAPs are connected to the core net-
work via wireless backhaul, and can be deployed by the
residential users in a plug-and-play fashion. The FAPs use
the 2.6 GHz licensed bandwidth to connect with FCMs,
and communicate with other FAPs via the Z interface in
a multicast fashion. Since FAPs and FCMs are located in
different rooms/floors of the building, the FAP-FAP and
FAP-FCM signal propagation undergo several losses. Here,
we only consider external wall loss, shadowing loss, and
the 2.6 GHz path loss models. As a result, the FAP-FAP
communication delay depends mainly on the location of the
FAPs.

3 FORMULATION OF THE FEMTO-CLOUD FORMA-
TION PROBLEM

This section formulates the femto-cloud formation problem.
We first formulate the utility function that quantifies the
performance of individual femto-clouds in Sec. 3.1. The
global femto-cloud formation problem with fair allocation of
incentives to FAPs is then formalized in Sec. 3.2. We finally
discuss the similarities between the formulated problem and
coalition formation games. Table 1 summarizes the notations
used in this section.
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3.1 Local Femto-Clouds and Their Utility

Mobile devices make decisions on offloading their feature
extraction tasks to FAPs based on the handling latency [33].
If offloaded to FAPs, they will then decide whether to
perform computations locally or send them to the remote
cloud taking into account the users’ QoE requirements, their
computational capacity and workload. The main goal in this
paper is to motivate a cooperation protocol to maximally ex-
ploit FAPs’ local resources. Neighboring FAPs form collab-
orative coalitions to increase local computational capacity.
Since FAPs are densely deployed, sending the data for the
requested tasks to such local femto-clouds incurs less latency
as compared to the remote cloud. This improves users’ QoE
while enabling FAP owners to earn incentive by sharing
their excess resources.

Resource sharing problems can generally be formulated
as constrained optimization problems with a utility func-
tion that trades-off the benefits and costs associated with
collaboration by sharing resources. Consider a set of FAPs,
indexed by the set K = {1, 2, . . . ,K}, and let C ✓ K denote
a coalition of FAPs formed for a fixed time interval over
which the parameters described below remain constant. The
case |C| > 1 is referred to as a femto-cloud, whereas |C| = 1

is referred to as an isolated FAP. Here, | · | denotes the
cardinality operator. The performance of femto-clouds are
then quantified by the function U : 2

K � ; ! R, where 2

K

denotes the power set of the set of FAPs K. This function
quantifies the total incentive earned by a femto-cloud as the
result of FAPs sharing their resources, which is then divided
among the FAPs in the femto-cloud, and is formulated as

U(C) = Ur

(C)� U c

(C) + Up

(C), (1)

where each term on the right hand side is described below:
The first term Ur

(C) models the revenue earned by the
femto-cloud and is formulated as

Ur

(C) = m
r

·DC , (2)

where m
r

is the revenue per unit task ($/task). Further,
DC denotes the sample mean of the task requests received
by femto-cloud C over the past time slots since the femto-
cloud has been modified/formed. If the requested tasks
for a particular FAP exceed its computational capacity, the
FAP offloads tasks to femto-cloud members and shares the
incentive with them. Since femto-clouds are formed for
several time slots, rather than dealing with instantaneous
offloaded tasks, the incentive function relies on the previ-
ously observed statistics of requests.

The second term U c

(C) in (1) represents the costs in-
curred by forming a femto-cloud, and is comprised of four
terms

U c

(C) = U c

r

(C) + U c

o,r

(C) + U c

o,m

(C) + U c

u

(C) (3)

where each term is described below:
1) Remote cloud cost: When the accumulated task

requests within a femto-cloud exceeds its computational
capacity, the excess tasks have to be offloaded to the remote
cloud to avoid processing delays. This incurs two types of
costs:

a) Remote cloud processing cost: The term U c

r

(C) in (3)
models the remote cloud processing cost

U c

r

(C) = c
r

·
��DC �Dmax

C
��+ , (4)

where c
r

is the remote cloud charges in $/task. Further,
|x|+ = max{0, x}, and Dmax

C =

P
k2C d

max

k

is the overall
computational capacity of femto-cloud C, where dmax

k

rep-
resents the computational capacity2 of the k-th FAP. This
term motivates FAPs to form coalitions with FAPs with low
workload to computational capacity ratio.

b) Remote cloud offloading delay cost: The second term
U c

o,r

(C) in (3) is the penalty associated with the data transfer
delay in offloading excess femto-cloud workload to the
remote cloud, and is formulated as

U c

o,r

(C) = c
o

·
✓��DC �Dmax

C
��+ · N

B

min

k2C bk
+ L

◆
. (5)

Here, N
B

denotes the data size, in bytes, of a task, b
k

is the
uplink data transmission rate, in bytes/sec, from k-th FAP
to FCM, L represents the wide area network (WAN) latency
introduced by transporting the task to the remote cloud via
the FCM, and c

o

($/sec) is the dimension for proportionality
constant.

2) Multicast offloading delay to FAPs: The term
U c

o,m

(C) in (3) represents the penalty for the delay in trans-
mitting data, associated with the tasks exceeding FAPs’ com-
putational, to the femto-cloud into a monetary penalty. It
provides incentive for FAPs to collaborate with neighboring
FAPs to decrease the handling delay and improve the QoE
of users, and is formally given by

U c

o,m

(C) = c
o

·
 
X

k2C

��d
k

� dmax

k

��+ · N
B

min

l2C�{k} bk,l

!

. (6)

Here, b
k,l

denotes the uplink data transmission rate from
the k-th FAP to the l-th FAP, d

k

is the sample mean of the
task request in the k-th FAP over the past time slots since the
femto-cloud has been modified/formed. Finally, d

k

�dmax

k

is
the number of tasks that exceeds the computational capacity
of the k-th FAP, and have to be sent to the cloud.

3) Demand uncertainty cost: Since femto-clouds are
formed for multiple time slots and we use sample statistics
rather than instantaneous task requests, it is important to
account for deviation from the mean demand so as to
avoid remote cloud costs. The last component of the cost
function captures such uncertainty in the overall femto-
cloud demand, and is formulated as

U c

u

(C) = c
u

·HC , (7)

where HC denotes the sample entropy of the accumulated
task request time series. This term simply motivates FAPs to
form femto-clouds with FAPs with less variability around
their mean computational demand.

Finally, the last term Up

(C) in (1) models the priority
value of the coalition C. With each FAP, there corresponds
a trust value, denoted by R

k

, that captures the quality of
its previous cooperative behavior [38]. By joining femto-
clouds and successfully performing computations offloaded

2. One unit of computational capacity is equal to one unit of work-
load.
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by other cloud members, FAPs earn trust. Femto-cloud
comprising of FAPs with higher trust values are expected
to perform tasks in a timely manner; therefore, the service
provider is willing to provide them with higher monetary
incentives as they improve the users QoE. This further elim-
inates free-rider FAPs that join coalitions to obtain incentives
without performing tasks.

We formulate Up

(C) as follows:

Up

(C) = m
p

·
 
X

k2C
R

k

· min{dmax

k

, f}
d
k

!

, (8)

where m
p

($) is the proportionality constant that determines
the relative weight of trust in formation of femto-clouds, and
f is a system parameter3 that depends on the overall task
requests in the system. Note in the above formulation that
higher priority is placed on FAPs with lower mean demand
to computational capacity ratios and higher trust values.
It is assumed that FCMs are responsible for updating the
trust values for their neighboring FAPs. The mechanism for
updating these trust values is however out of the scope of
this paper, and merits a separate publication. We further
assume that R

k

remains constant for several time slots while
the FCM monitors the k-th FAP cooperative behavior, and
is only updated when the femto-clouds structure is being
modified.

3.2 Optimization of the Femto-clouds with FAP Incen-
tives
As mentioned in Sec. 3.1, FAPs expect incentives for sharing
their excess resources. Let r = (r

1

, . . . , r
K

) denote the
incentive allocation vector. Each element r

k

represents the
share of each FAP k from the total incentive obtained by
the femto-cloud C that FAP k have joined. To make the
problem mathematically tractable, the set of incentive values
is confined to a finite set. Suppose � ($) is the smallest
incentive unit. Each FAP’s demand is then restricted to the
set

P =

⇢
bn�;

bn 2 N, 0  bn�  max

C22

K�;
U(C)

�
, (9)

where N represents the set of all natural numbers, and the
function U(·) is defined in Sec. 3.1. Let further B denote the
set of all possible femto-cloud structures. Each femto-cloud
structure S is a partition on the set K, i.e., [C2SC = K. The
femto-cloud formation problem is then formulated as

max

S2B

X

C2S
bU(C)c

�

,

s.t. r
k

2 P,
X

k2C
r
k

= bU(C)c
�

, 8C 2 B,
X

k2C0

r
k

� bU(C0
)c

�

, 8C0 ✓ K, C0 6= ;.

(10)

where bxc
�

= b x
�

c ·� denotes the greatest integer multiple
of the smallest divisible incentive unit �, and P is defined
in (9).

3. Taking the minimum in (8) is a technicality to avoid obtaining
excess priority for computational capacity that exceeds the femto-cloud
demands.

Before proceeding to provide an intuitive interpretation
of (10), a few definitions are in order. Let r and r0 denote
two K ⇥ 1 incentive vectors. The product ordering r  r0

holds if and only if r
k

 r0
k

for all k 2 K. An incentive
allocation r is then called efficient if the sum of incentives of
all FAPs is equal to the maximum total incentive, achievable
under the most desirable femto-cloud structure. In addition,
if a group of FAPs can form a femto-cloud C0 where the
division of coalition’s incentive guarantees r0 � r, then
C0 will block the currently formed femto-cloud C and the
associated incentive vector r. An incentive vector r is called
non-blocking if for all possible femto-clouds C0, the associated
incentive r0 satisfies r � r0. The second constraint in (10)
ensures that the incentives allocated to FAPs are efficient.
The third constraint in (10) is the non-blocking condition,
and can be interpreted as a fairness criterion on the division
of incentives among FAPs in each femto-cloud. An incentive
allocation vector is called fair if no FAP can gain higher
incentive by sharing its resources with a different group of
FAPs. The solution to (10) can thus be considered as the
optimal femto-cloud structure in that: i) the computational
capacity of all FAPs is maximally exploited, and ii) the
FAP incentives are distributed in a fair fashion within each
femto-cloud.

Coalition Formation Game Interpretation: The femto-
cloud formation problem with FAP incentives outlined
above fits well within the context of coalition formation
games. The coalition formation games encompass coopera-
tive games where the coalition structure plays a major role,
and are defined by the pair (G, V ), where G denotes the set
of players and V : 2

G � ; ! R is the characteristic function4.
This function associates with any non-empty coalition a
number that quantifies the total payoff that can be gained
by the coalition. A cooperative game is called superadditive
if for any two disjoint coalitions C

1

, C
2

⇢ G:

V (C
1

[ C
2

) � V (C
1

) + V (C
2

).

In superadditive games, the grand coalition—the coalition
consisting all players—forms the stable coalition structure.
The coalition formation games encompass cooperative games
where the coalition structure plays a major role. These
games are generally non-superadditive; therefore, the opti-
mal coalition structure may be comprised of several disjoint
coalitions. Due to the data transfer delay and limited com-
putational capacity of FAPs, it is intuitive that the optimal
structure of femto-clouds has to incorporate several disjoint
coalitions of FAPs. It is thus natural to formulate the femto-
cloud formation problem as a coalition formation game with
G = K and V (·) = U(·). In particular, the solution of the
femto-cloud formation problem (10) is identical to a solu-
tion notion in coalition formation games, namely, modified
core [10]. Therefore, solving (10) is equivalent to finding the
modified core of the underlying coalition formation game.
The interested reader is referred to [39], [40], [41] for further
details.

4. The term characteristic function is as used in cooperative games
and is unrelated to characteristic functions in probability theory.
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4 DISTRIBUTED FEMTO-CLOUD FORMATION AND
CONVERGENCE TO THE CORE

This section presents a distributed femto-cloud formation al-
gorithm that guarantees convergence to the solution of (10)
almost surely, and elaborates on its implementation consid-
erations.

4.1 Distributed Femto-Cloud Formation Algorithm
Define network state pair by ! = (S, r), which contains the
femto-clouds structure S and the incentive vector of FAPs r.
The distributed femto-cloud formation procedure relies on
the dynamic coalition formation algorithm proposed in [10]
and is summarized below in Algorithm 1. The advantage
of using the decentralized procedure in Algorithm 1 over
centralized solutions is that it retains autonomy of FAP
owners as whether to collaborate and better captures the
dynamics of the negotiation process among them [10]. In
a centralized solution, FAP owners have to be forced to
follow the calculated optimal femto-cloud structure. In fact,
if an FAP owner decides to not follow the prescription,
the implemented femto-cloud structure is no longer the
optimal solution. In contrast, the decentralized solution
implemented in Algorithm 1 mimics the natural procedure
that FAP owners will follow to form collaborative groups—
they explore their options and settle in the femto-cloud that
provides the highest feasible incentive. The implementation
considerations will be addressed in the next subsection.

The myopic best-reply strategy implemented in Step 2.1-
2.3 of Algorithm 1 defines a finite-state Markov chain,
namely, best-reply process [10]. Standard results on finite state
Markov chains show that, no matter where the process
starts, the probability that the best-reply process reaches a
recurrent set of states after n iterations tends to one as n
tends to infinity. The outcome that which of these ergodic
states will eventually be reached is determined by the initial
state. Under the best-reply process, absorbing states do
not necessarily guarantee reaching the solution of (10). To
address this issue, perturbation has to be introduced. That is,
to allow FAPs deviate from optimal strategies and choose
sub-optimal strategies with a small probability with the
hope of achieving higher incentives. The interested reader
is referred to [10] for details and further discussion.

Deviation from the best-reply process, namely, experi-
mentation, is formally defined as follows: In any state, when
there exists a potential femto-cloud C0 2 2

K such that
P

k2C0 r
k

< bU(C0
)c

�

, (13)

each FAP k 2 C0 follows the best-reply process of Step 2.1-
2.3 with probability 1� ". With the remaining probability ",
it randomly joins an existing femto-cloud, and demands the
surplus incentive that the femto-cloud expects to achieve as
the result of FAP k joining it. The blocking condition (13) is
checked in Step 1 of Algorithm 1. This modified best-reply
process defines a finite-state Markov chain, namely, best-
reply process with experimentation [10], with the same state
space as the best-reply process (without experimentation)
and slightly modified transition probabilities.

The limiting distribution of the best-reply process with
experimentation summarized in Algorithm 1 assigns prob-
ability one to the states (Sn, rn) that solve the femto-cloud

Algorithm 1 Distributed Femto-Cloud Formation
Initialization. Set 0 < ", ⇢ < 1, where ⇢ is the probability
of revising strategy and " is the experimentation probability.
Initialize !0

= (S0, r0), where

S0

=

�
{1}, . . . , {K}

 
, r0 =

�
br
1

, . . . , br
K

�
, and br

k

= U({k}).

Step 1. Find blocking coalitions by FCM:
Let An

= ;. For all C 2 2

K � ;,

if
P

k2C r
n

k

< bU(C)c
�

, then An  An [ C.

Step 2. Each FAP k 2 {1, . . . ,K} independently performs:
Step 2.1. With probability ⇢, continue with Step 2.2.
With the remaining probability 1 � ⇢, stay in the same
coalition, set rn+1

k

= rn
k

, and go to Step 2.5.
Step 2.2. Compute

eCn+1

k

= argmax

C2Sn[;

0

@bU(C [ {k})c
�

�
X

l2C,l 6=k

rn
l

1

A (11)

ern+1

k

=

⌅
U
� eCn+1

k

[ {k}
�⇧

�

�
X

l2eCn+1
k ,l 6=k

rn
l

(12)

Step 2.3. If k 2 An, with probability ", go to Step 2.4.
With the remaining probability 1� ", sample uniformly
from the set Sn [ ;, denote it by eCn+1

k

, and set rn+1

k

=

ern+1

k

, where ern+1

k

is computed according to (12). Go to
Step 2.5.
Step 2.4. Set rn+1

k

=

ern+1

k

and, if non-singleton, random-
ize among eCn+1

k

uniformly.
Step 2.5. If k 6= K , continue with the next FAP.

Step 3. Form !n+1

= (Sn+1, rn+1

).
Set n n+ 1 and go to Step 1.

formation problem (10). This result is summarized in the
following theorem.

Theorem 4.1. Let !c

= (Sc, rc) denote the states that solve
the femto-cloud formation problem (10). Then, the sam-
ple path of !n

= (Sn, rn) generated by Algorithm 1
converges almost surely to the core, i.e.,

P
�
lim

n!1 !n

= !c

�
= 1, (14)

for all initializations !0 if the solution set is non-empty.
Proof: The proof relies on the results of [10] and

the analogy between the femto-cloud formation prob-
lem (10) and the modified core of the underlying coali-
tion formation game; see Sec. 3.2 for details. It is shown
in [10] that the best-reply process with experimentation
implemented by Algorithm 1 converges almost surely
to the modified core of the coalition formation game;
see [10] for the detailed proof. Comparing the definition
of modified core in [10] with (10) then completes the
proof.

4.2 Implementation Considerations

a) Decentralized Implementation: The proposed al-
gorithm, independently followed by each FAP, provides a
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decentralized solution to (10). This decentralized implemen-
tation relies on collaboration among the FCMs. It is assumed
that FAPs monitor their users task request statistics over
an interval comprising several time slots, and periodically
transmit this information to their neighboring FCM. The
FCMs then exchange this information with each other so
as to be able to evaluate the femto-cloud characteristic func-
tion (1) and detect for blocked FAPs (Step 1 in Algorithm 1)
in their neighborhood. Note that data size of user request
information is negligible compared to the image/video data
size. The FCMs are further responsible for providing FAPs
that decided to revise their cooperation strategies with the
feasible incentive (the term inside parentheses in (11)) in
the associated femto-cloud, and to inform the blocked FAPs
of their potential for obtaining higher incentives in other
femto-clouds. Finally, having been enabled to communicate
with each other, it is the task of FCMs to collaboratively
update the network state parameter !n in Algorithm 1.

b) Time-scales: We assume that the femto-cloud
structure remains constant for several time slots, and FAPs
update their user request statistics with the same frequency.
During this period, FAPs run Algorithm 1 based on the
most recent sample statistics of the user requests. Once
convergence to the solution takes place, the femto-cloud
structure and associated incentives will be followed in the
next decision epoch that the femto-cloud structure is being
revised. Note that, since FAPs and FCMs are both static, the
FAP-FAP and FAP-FCM channel responses remain constant
over a period that is even longer than the intervals over
which femto-cloud structures are assumed to remain con-
stant.

c) Characteristic Function Parameters: The parame-
ters m

r

, c
r

, c
o

, c
u

, and m
p

in (1) could be mathematically
be interpreted as weight factors that determine the relative
importance of the different factors considered in formula-
tion of the characteristic function such as the delay cost,
the demand uncertainty cost, and remote cloud processing
cost. Clearly, the values of these parameters affect the op-
timal femto-cloud structure and incentive allocations. The
particular choice of these values will depend on the specific
application. For instance, in some applications users may be
willing to incur longer delays to pay less for using the femto-
cloud, in which case c

o

should be smaller relative to m
r

. In
others, users may not tolerate delay, where c

o

should be set
very large. We further emphasize that the utility function
formulated in Sec. 3.1 is only an example that exhibits
how to incorporate different factors into the implementation
of femto-clouds. Depending on the application specifics,
certain terms could be added or omitted.

d) Empty Core: Finally, imposing conditions on the
utility function to ensure existence of a solution (modified
core of the underlying game) could be inherently complex
in some applications. To address this issue, the experimen-
tation factor " in Algorithm 1 can be made to diminish to
zero with time, e.g., one can replace " with "

n

= 1/n↵ for
0 < ↵ < 1. This ensures that Algorithm 1 converges to
the absorbing states of the best-reply process (Steps 2.1-2.3
in Algorithm 1) if the core is empty. Extensive simulations
in Sec. 5 numerically verify that the results still outperform
alternative schemes.

5 NUMERICAL RESULTS

This section provides numerical examples to evaluate the
performance of the proposed incentive-based femto-cloud
formation scheme.

5.1 Object Recognition Tasks

We focus on the processing associated with the object recog-
nition task from images and videos captured via vision-
based sensors in mobile devices, which is required to sup-
port mobile augmented reality applications. The formula-
tion, however, is general enough to be adapted to various
computationally intensive applications such as face recogni-
tion, pattern recognition, and optical character recognition
from images/videos5. In particular, applications with dif-
ferent computational requirements can be split into several
equal-sized computational sub-tasks. The utility function
only requires how many sub-tasks can be executed in the
femto-cloud and the predicted demand of sub-tasks in the
coalition.

Feature extraction is typically the most computation-
ally intensive task in object recognition at the deployment
stage [42]. We assume that FAPs are equipped with graphics
processing units (GPUs), and are capable of performing
parallel computations in their GPUs. Therefore, the feature
extraction procedure can be performed either on the UE’s
local processor, or on the FAPs. When both UE and FAPs
are busy or lack sufficient computation capacity, the task is
outsourced to the remote cloud. Once extracted, the feature
vectors are sent to the application server, which compares
them with the training models, and sends the best matched
result(s) to the UE. In the examples to follow, we consider
feature extraction tasks on both images and videos. At each
time, each UE can either offload an image or a video to the
FAP for the feature extraction task. In the numerical exam-
ples, gPb6 is used for feature extraction. We assume that the
duration of a video is uniformly distributed between 1 to 10
seconds.

Here, one unit of workload/demand associated with
feature extraction is considered to be 144 Giga floating
point operations per second (GFLOPs), which is also used to
define one unit of computational capacity7. We assume that
a 3264⇥2448 pixels image is divided into 9 sub-images [44],
[45] with each sub-image containing 1088 ⇥ 816 pixels and
occupying 2.1 mega bit (Mb) memory. Similarly, videos are
divided up into 1 second segments. Each 1 second video
of 640 ⇥ 480 pixels and 30 frame rate occupies 2.2 Mb
memory. In both cases, the feature extraction task requires
approximately 144 GFLOPs which is equivalent to one unit
of workload or computational capacity.

5. Different object recognition applications may require different fea-
ture descriptors. The choice of the descriptor, however, is not crucial
to the problem formulation and the proposed femto-cloud formation
mechanism; it only affects the parameters of the utility function defined
in Sec. 3.1.

6. The global probability algorithm (gPb) is a contour detection algo-
rithm that achieves the best performance among all such schemes [43].
The computational requirement of gPb is 158,600 FLOPS per pixel [42].

7. 72 cores, each with 1000 MHz clock speed, are grouped together
and considered as one unit of computational capacity.
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5.2 Simulation Setup
Throughout this section, the NS-3 simulator is used as a
realistic simulation of the entire LTE system architecture.
We consider a city environment and use the LTE mod-
ule developed by the LENA project [46], [47] as follows:
We use LENA’s RandomRoomPositionAllocator function to
randomly locate 15 FAPs inside a 10-story building made
of concrete and comprising 20 apartments, as depicted in
Fig. 2. There exist 2 FCMs in the building located close to
FAP-2 and FAP-15, respectively. The FCMs are connected
to the remote cloud via 1Gbps optical fiber link. LENA’s
HybridBuildingsPropagationLossModel and 3kmphTraceFadin-
gLossModel functions (i.e., slowly varying Nakagami-m fad-
ing model) are used for propagation loss and channel fading
between UEs and FAPs, respectively. We further use the
Kun2600MhzPropagationLossModel function as the propaga-
tion loss model for FAP-FAP and FAP-FCM communication.
The handover is handled via the LENA’s AddX2Interface
function. UEs are further randomly located inside the build-
ing and connected to FAP using the AttachToClosestEnb
function. At each time slot, sub-channels are allocated to
users in each FAP according to the proportional fair (PF)
scheduling policy with hybrid automatic repeat request
(HARQ) re-transmission mechanism. Further, the UEs and
FAPs are equipped with multiple input multiple output
(MIMO) antennas, and support adaptive modulation and
coding. UEs transmit UDP packets to the FAP. FAPs also
transmit UDP packets for multi-cast communication. The
data transfer rates are calculated from the RLCTrace files
generated by the NS-3 simulator. Other NS-3 simulation
parameters are listed in Table 2. Finally, the UE is considered
to be an iPhone 5S and can perform 76.6 Giga floating point
operations per second.

5.3 Numerical Examples
With the above simulation set-up, in the following exam-
ples, the effect of a single parameter is studied on the
formation of femto-clouds while other parameters are kept
constant. We set " = 0.3, ⇢ = 0.2, � = 1, and ↵ = 0.5 in
Algorithm 1. Table 4 summarizes the parameters of all FAPs.
These parameters are chosen so as to enable illustrating
different scenarios. Each point on the graphs of Figs. 3-6
are averaged over 1000 i.i.d. realizations. The results are
compared with two alternative heuristic schemes for femto-
cloud formation. Scheme-1 is based on the relative distance
of the FAPs. That is,  FAPs with the least relative distances
form a local femto-cloud. Scheme-2 relies on the compu-
tational capacity, the sample mean and sample entropy
of demand at the FAPs. That is, FAPs are ranked based
on the value of dmax

k

� d
k

� H
k

. Then,  FAPs with the
highest ranks are collected to form a local femto-cloud with
 lowest ranked FAPs. The procedure continues until all
FAPs form/join a coalition. Coalition structures in heuristic
schemes are listed in Table 3.

5.3.1 Example 1

The first example studies the effect of data transfer delay in
the formation of femto-clouds. This scenario represents an
enterprise environment where all FAPs are owned by the
same authority. Therefore, we set m

r

= c
r

= c
u

= m
p

= 0,
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Fig. 2. FAPs and FCMs locations inside the building. UE arrival at each
FAP follows a Poisson distribution. The number of UEs in the simulation
depends on the user arrival rate at each FAP (see Table 4).

TABLE 2
Simulation setup: LTE system parameters in NS-3

Parameters Value/Type
Adaptive Modulation & Coding PiroEW2010

Bit Error Rate 0.0005
MIMO 2⇥ 2

FAP Antenna IsotropicAntennaModel
External Wall Loss 10 dB
Shadowing Loss 5 dB

EPS Bearer GBR CONV VIDEO
FAP Transmission Power 20 dbm

FAP Noise Figure 5 dbm
UE Transmission Power 10 dbm

UE Noise Figure 5 dbm
Macrocell Bandwidth 20 MHz

Mobility Model ConstantPosition
Scheduler PfFfMacScheduler

TABLE 3
Femto-cloud coalition structures in heuristic schemes

Femto-Clouds Coalition Structure
Scheme-1 {1,2,5,8,9},{3,4,12,13,14},{6,7,10,11,15}

Scheme-2 (FAP-1
comp. capacity 0–4) {1,2,6,10,15},{3,7,9,11,12},{4,5,8,13,14}

Scheme-2 (FAP-1
comp. capacity 6–8) {2,6,7,10,15},{1,3,9,11,12},{4,5,8,13,14}

Scheme-2 (FAP-1
comp. capacity 10–14) {1,2,7,10,15},{3,9,11,12,14},{4,5,6,8,13}

Scheme-2 (FAP-1
comp. capacity 16–20) {2,7,10,12,15},{3,4,9,11,14},{1,5,6,8,13}

Scheme-2 (FAP-1
arrival rate 1) {1,7,10,12,15},{2,3,4,9,14},{5,6,8,11,13}

Scheme-2 (FAP-1
arrival rate 2) {1,2,7,10,15},{3,9,11,12,14},{4,5,6,8,13}

Scheme-2 (FAP-1
arrival rate 3–5) {1,2,6,10,15},{3,7,9,11,12},{4,5,8,13,14}

and c
o

= 1 $/sec. The goal will thus be to reduce the overall
handling delay by forming local femto-clouds. Fig. 3 shows
the average data transfer delay in the femto-clouds versus
the computational capacity of FAP-1. The ‘Isolated FAPs’
case refers to the scenario where no FAP is willing to cooper-
ate and operates individually—that is, there exist no femto-
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TABLE 4
Simulation setup: FAP parameters in the numerical example

FAP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Trust Value 0.1 0.5 0.5 0.4 0.1 0 0.1 0.2 0.4 0.1 0.2 0.4 0.1 0 0.5
Comp. Capacity 10 10 30 10 10 5 5 20 20 15 15 5 10 10 30
User Arrival Rate 2 1 2 2 1 2 3 2 3 1 2 2 1 3 1
Mean Process. Requests 20.47 13.13 17.63 15.7 13.51 16.46 20 11.4 17.77 8.13 17.53 11.67 10.64 21.63 13.16
Entropy 3.55 2.96 3.38 3.23 3.02 3.23 3.29 2.97 3.28 2.75 3.29 2.97 2.8 3.38 2.99

cloud. In contrast, the ‘Grand femto-cloud’ refers to the case
where all FAPs form one large collaborative femto-cloud.
In the ‘Isolated FAPs’ case, as the computational capacity
increases, FAP-1 can perform more tasks locally and offloads
fewer tasks to the remote cloud. This leads to the reduction
of WAN latency. Therefore, the data transfer delay of FAP-1
decreases and, hence, the overall data transfer delay in the
femto-clouds decreases.

As can be seen in Fig. 3, the data transfer delay in
the femto-cloud structures prescribed by Algorithm 1 is
the lowest. This is in contrast to the grand femto-cloud
which provides the highest delay. This is mainly because
some FAPs are located far away in the building; hence,
the multicast delay in the grand femto-cloud is high. The
data transfer delay in alternative scheme-1 is higher than
alternative scheme-2. This is due to the fact that some FAPs
have more requests than their computational capacity, in
which case tasks are transported to the remote cloud and,
hence, the WAN latency increases. The ‘Isolated FAPs’ case
ignores cooperation among FAPs, which naturally results in
higher delay.

The femto-cloud structures are listed in Table 5 for
various values of computational capacity for FAP-1. FAP-
1 forms a femto-cloud with FAP-8 and FAP-15 when its
individual computational capacity is low. In this case, FAP-1
offloads a portion of the requested tasks to the femto-cloud
and reduces WAN latency as compared to transporting tasks
to the remote cloud. However, as the computational capacity
of FAP-1 goes beyond its demand, it joins in a different
femto-cloud so as to be able to process tasks exceeding
the capacity of the femto-cloud members. This reduces the
overall handling delay in the femto-cloud and improves
users’ QoE.

5.3.2 Example 2

This example considers a scenario where FAPs are deployed
by residential users. To motivate owners for sharing excess
resources, monetary incentives are considered as described
in Sec. 3.2. Therefore, FAPs are motivated to cooperate by
forming femto-clouds not only to reduce the handling delay,
but also to earn incentive. We assume m

r

= 4 $/task, c
r

= 5

$/task, c
o

= 3 $/sec, c
u

= 2 $/task, m
p

= 1, and f = 200

in the characteristic function (1).
Figure 4 plots the total incentive earned by all FAPs

versus computational capacity of FAP-1. As the capacity
of FAP-1 increases, it can serve more tasks exceeding other
FAPs’ capacities within the femto-cloud; hence, it receives
higher incentives, which in turn increases the total incentive.
Note that, for lower computational capacity, the incentive
obtained by FAP-1 is still higher than the ‘isolated FAPs’
case. This is because incentives depend not only on the
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Fig. 3. Computational capacity of FAP-1 vs. average data transfer delay
in the femto-clouds (c
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Fig. 4. Computational capacity of FAP-1 vs. femto-cloud incentive.

revenue but also on costs associated with delay costs. By
forming a femto-cloud, FAP-1 can save on its delay costs as
explained in Example 1 and, thus, obtains higher incentives.

Figure 5 also displays the total incentive obtained by all
FAPs versus the user arrival rate at FAP-1. As expected, as
the user arrival rate at FAP-1 increases, the tasks requested
at FAP-1 will increase and the incentives it receives will
decrease. This is mainly because FAP-1 (in the isolated case)
as well as other FAPs in the femto-cloud need to transport
more tasks to the remote cloud, which increases the delay
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TABLE 5
Femto-clouds coalition structures in Example 1

FAP-1 Computational
Capacity Femto-Clouds Coalition Structure

0 {1,8,15}, {2}, {3,7}, {4}, {5,10}, {6},
{9}, {11}, {12}, {13}, {14}

2–14 {1,6,8,15}, {2}, {3,4}, {5,10}, {7}, {9},
{11}, {12}, {13}, {14}

16–20 {1,3,4,6,8,9}, {5,10}, {11,12,15}, {2},
{7}, {13}, {14}

TABLE 6
Femto-clouds coalition structures in Example 2

FAP-1 Computational
Capacity Femto-Clouds Coalition Structure

0-10 {1,2,3,4,6,7,8,9}, {11,12,13,14,15}, {5,10}
12-20 {1,6,8,11,12,13,14,15}, {2,3,4,5,7,9,10}

FAP-1 User Arrival
Rate Femto-Clouds Coalition Structure

1-5 {1,2,3,4,6,7,8,9}, {11,12,13,14,15}, {5,10}
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Fig. 5. User arrival rate at FAP-1 vs. femto-cloud incentive.

costs and remote cloud charges and, hence, reduces the
incentives offered to FAPs. Note that this example considers
the case where the charge per computation in the remote
cloud is higher than the revenue obtained per computation
in femto-cloud, i.e., m

r

 c
r

in (1). Therefore, for fixed
computational capacity, FAP-1’s incentives decreases as the
user arrival rate increases. The femto-cloud structures are
listed in Table 6.

Fig. 6 shows the delay-incentive trade-off for a range of
computational capacity of FAP-1. As expected, the femto-
cloud data transfer delay for the femto-cloud structures in
Example 2 is higher than those obtained in Example 1. This
is due to the fact that the main goal of femto-cloud formation
in Example 2 is to maximize the incentives where delay cost
c
0

is lower than the computational revenue m
r

and remote
cloud processing cost c

r

, whereas the aim of femto-cloud
formation in Example 1 was to reduce the data transfer
delay.
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Fig. 6. Computational capacity of FAP-1 vs. average data transfer delay
in the femto-clouds.
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Fig. 7. Computational capacity of FAP-1 vs. femto-cloud incentive.

5.3.3 Example 3

In this example, we consider a hotspot scenario where all
FAPs are located closely such that the multicast offloading
delay among FAPs is negligible. More precisely, in such a
case, the uplink data transmission rate from the k-th FAP
to the l-th FAP, denoted by b

k,l

in (6), is much greater than
N

B

. This results in the U c

o,m

(C) term in (3) being negligible
compared to other terms.

Figure 7 shows the total incentives earned by all FAPs
versus computational capacity of FAP-1. Here, the grand
femto-cloud is the optimal coalition structure and provides
the highest incentives to the FAP owners compared to other
heuristic schemes.

6 CONCLUSION

To reduce the handling latency and costs associated with
offloading computationally intensive tasks to remote clouds,
the local computational capacity of femtocell access points
(FAPs) should be maximally exploited. To this end, this
paper proposed formation of femto-clouds comprising of
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several FAPs wherein their excess computational resources
are shared. In exchange for sharing their excess resources,
FAP owners receive monetary incentives. We formulated
the resource sharing problem as an optimization problem
with the objective to maximize the overall utilities of all
femto-clouds subject to the fair division of incentives among
individual FAPs within a femto-cloud. We then presented a
distributed femto-cloud formation algorithm that enabled
FAPs to reach the optimal solution in a distributed fashion.
We further commented on the similarities between the solu-
tion of the formulated problem and the modified core of a
coalition formation game. Finally, simulation experiments
using the LTE protocol stack in NS-3 showed superior
performance of the proposed scheme in terms of both han-
dling latency and incentives provided to FAP owners. They
confirmed the interesting observation that a femto-cloud
comprised of all FAPs is not always optimal—in many cases,
multiple disjoint femto-clouds resulted in reduced latency
and higher incentives to the FAP owners. The numerical
examples further verified the applicability of Algorithm 1 in
a wide range of scenarios, e.g., hotspot area, residential, and
enterprise femtocell environments.
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