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Objectives

For multivariate data with multiple change points, ABACUS
(Automatic BAyesian Changepoints Under Sparsity) inte-
grates sparse Bayesian blind source separation with a change
detection framework to:
•Recover lower-dimensional latent signals;
•Utilize multi-level sparsity to achieve both dimensionality
reduction and modeling of signal changes;

•Detect additive outliers and level shifts separately.

Introduction

Offline multiple change detection in multivariate data is studied,
specifically where the data exhibit mean changes that can occur
simultaneously in several channels. The direction and magnitude
of change can be different across channels. The multivariate data
are assumed to be generated by low-dimensional latent source
signals through linear mixing according to the model Y = MS+
E, shown in Figure 1.

Observed mean changes manifest from the latent space, and
changes are detected by estimating these latent source signals,
which possess ‘semantic’ meaning of the underlying states and
are free of noise.

Figure 1: Given observations generated by the linear mixing of signals contaminated by noise,
ABACUS estimates the source signals and detect additive outliers (AO, red) and level shifts
(LS, blue). In M , darker and lighter cells represent negative and positive values respectively,
and medium gray cells represent zero.

Related Works

Other matrix decomposition methods do not recover piecewise-
constant latent signals, and do not correctly recover the effective
dimensionality of the latent space.

(a) PCA (b) Bayesian PCA

(c) ICA (d) Factor Analysis

Problem Formulation

Observations Y ∈ RP×N is a P -dimensional data stream of
lengthN . LetK be a user-specified upper bound for rank(S) = r
such that r ≤ K < P . Then the decomposition is:

Y·n = MS·n + E·n

S·n = S(0)
·n + S(1)

·n
S(0)
·n = V (0)

·n and 4S(1)
·n = V (1)

·n

where
•M ∈ RP×K is the mixing matrix
•S ∈ RK×N is the source signal matrix
•S(0), S(1) ∈ RK×N are component matrices of S
•V (0), V (1) ∈ RK×N are sparse change matrices
•E·n ∼ N(0, Ψ) and Ψ = diag (ψ)

Figure 3: Implementation procedure. From observations Y, a partial model is first fit and its estimations initialize the full Bayesian model. Final estimates of source signals and change points are
obtained from the median of MCMC samples.

1. Bayesian Latent Variable Model

Sparse group priors are placed on the columns of M and rows of
V (d) through λ(d)

h for dimensionality reduction of the latent space.
Sparse group priors are also placed on the columns of V (d) through
φ(d)
n to select a subset of indices as change locations. Elementwise

sparsity is placed on V (d) through γ(d)
hn to allow sparse changes for

each latent variable.

For 1 ≤ i ≤ P and 1 ≤ h ≤ K and 1 ≤ n ≤ N and d ∈ {0, 1},
priors are set as:
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Priors of ψi are Inverse Gamma and priors of shrinkage parame-
ters are half-cauchy.

2. Change Detection

Let f (d)
n be the element with the largest magnitude in change

matrix V (d)
·n . At any index n, f (d)

n is nonzero if and only if there
is a change of type d in at least one latent variable. Finding all
such indices is equivalent to finding the change locations. For
robustness with empirical samples, use
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n = median
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n
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(a) Values of ĝ(0) (b) Estimated density of |ĝ(0)|

Application: array-based comparative
genomic hybridization

aCGH is a technique for studying copy number alterations in
event of diseases. The dataset contains 43 samples of different
individuals with bladder tumor. Each sample has 2215 probes
measuring the log2 ratio between the number of transcribed DNA
copies from tumorous cells and from a healthy reference.

Figure 5: log2 ratio between the number of transcribed DNA copies from tumorous cells
and from a healthy reference. Negative indicates deletion, positive indicates amplification.

Figure 6: Latent source signals (1-5) recovered with K = 5

S Chromosome arm with changes Tumor stage
1 2q, 3q, 20p/q pT1
2 17p/q, 18p/q, 19p/q, 20p/q pT1
4 10q pTa, pT1, pT2−4
5 11p, 20p/q pT2−4

Table 1: Genetic aberrations corresponding to changes on latent signals

ABACUS performs consistently across differentK in terms of the
change points and latent source signals recovered.
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