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For multivariate data with multiple change points, ABACUS Other matrix decomposition methods do not recover piecewise- Observations Y € REP*N is a P-dimensional data stream of
(Automatic BAyesian Changepoints Under Sparsity) inte- constant latent signals, and do not correctly recover the effective length N. Let K be a user-specified upper bound for rank(S) = r aCGH is a technique for studying copy number alterations in
grates sparse Bayesian blind source separation with a change dimensionality of the latent space. such that » < K < P. Then the decomposition is: event of diseases. The dataset contains 43 samples of different
detection framework to: g ST I e Y, = MS., +E. individuals with bladder tumor. Each sample has 2215 probes
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- Utilize multi-level sparsity to achieve both dimensionality A S St SO = Y0 and ASH = 1) coples from tumorous cells and from a healthy reference.
reduction and modeling of signal changes: (a) PCA (b) Bayesian PCA where
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Offline multiple change detection in multivariate data is studied,

specifically where the data exhibit mean changes that can occur 3 10 é ’ 3 10 17
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&multaneously in several channels. The direction and magmtude Figure 5: log2 ratio between the number of transcribed DNA copies from tumorous cells
of change can be different across channels. The multivariate data and from a healthy reference. Negative indicates deletion, positive indicates amplification.
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changes are detected by estimating these latent source signals, Y Chromosome
which DOSSESS ‘semantic’ meanin o of the und erlyin o states and ngt ;;f.;; '||r_1&t3c: Deatr?;:tLASCEht;rSSEIE{;W Figure 6: Latent source signals (1-5) recovered with K =5
are free of noise. Figure 3: Implementation procedure. From observations Y, a partial model is first fit and its estimations initialize the full Bayesian model. Final estimates of source signals and change points are : .
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