Institute for nfocomm Research

Streaming Setting

Data is collected by continuously monitoring a system. A key challenge for model deployments in dynamic environments is concept drift, where the joint distribution of predictor and response variables change across time. In order to avoid degrading performance, deployed models need to be updated when necessary.

Online Time Series Prediction

Unlike in the traditional online learning framework, temporal correlations means that observations cannot assumed to be independently and identically distributed.

Setup

- For process $\{Z_t\}$, observation $z_t \in \mathbb{R}^d$
- At time t, use a historical sequence x_t of length *m*, to predict an output forecast sequence y_t for the next *n* time steps
- $x_t = [z_{t-m+1}, ..., z_t]$
- $y_t = [z_{t+1}, \dots, z_{t+n}]$
- Denote prediction sample $s_t = (x_t, y_t)$
- Online batch size *b*

Observations:

Main Contributions

- Adapt quickly in dynamic environments without overfitting to current system state or noisy samples, by
- Automatically scheduling the online learning rate of stochastic gradient descent (SGD) algorithm

Adaptive Learning Rate

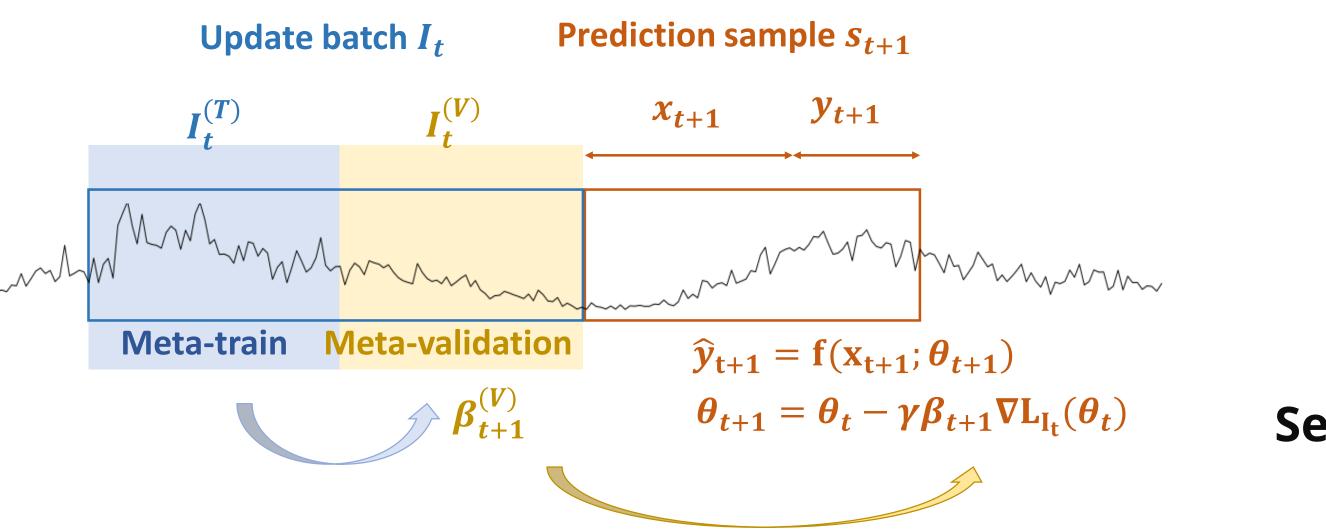
- Maximum learning rate γ
- Learning rate factor $\beta_{t+1} \in [0,1]$
- Learning rate is small if the current update batch is not useful in helping the model adapt

Meta-Learn the Learning Rate Factor

- Split the update batch to a meta-training and meta-validation set
- Meta-learning sets are a proxy to the training and testing procedure
- Optimize the learning rate factor on the metalearning sets

Implementation

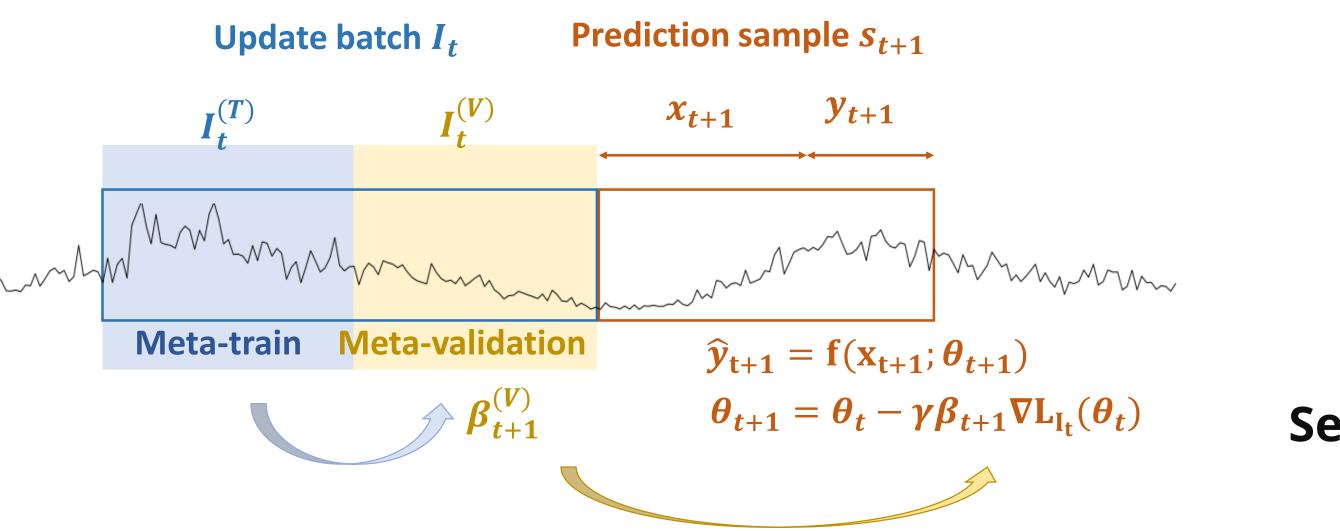
- 1. POLA-FS: Search for $\beta_{t+1}^{(V)}$ in a finite set of candidates
- 2. POLA-GD: Optimizes for $\beta_{t+1}^{(V)}$ by gradient descent with learning rate η for k steps, while freezing all other model parameters

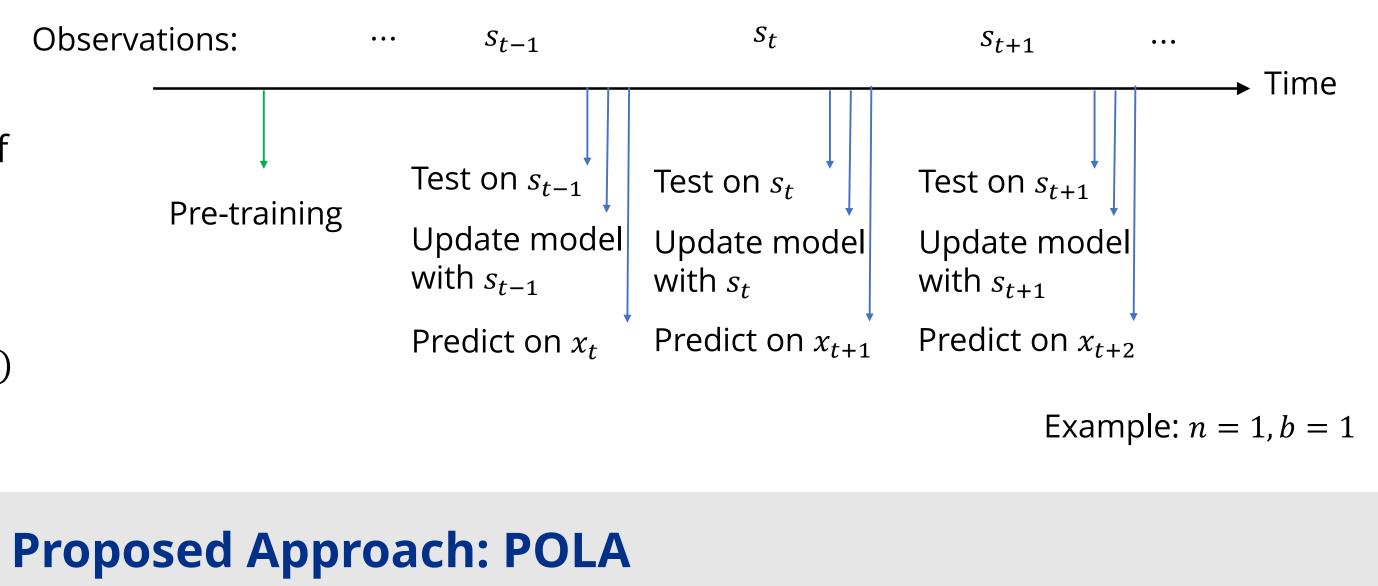


 $\theta_{t+1}^{(V)}, \beta_{t+1}^{(V)} = argmin_{\theta,\beta}L_{I_{t}^{(V)}}(\tilde{\theta})$ subject to $\tilde{\theta} = argmin_{\theta} \{\gamma \beta L_{I_{t}^{(T)}}(\theta) - \frac{1}{2} ||\theta - \theta_{t}||_{2}^{2} \}$ and approximate β_{t+1} with $\beta_{t+1}^{(V)}$

Step i + 1: $\alpha^{(i+1)} = \alpha^{(i)} - \eta \nabla_{\alpha^{(i)}} L_{I_t^{(V)}}(\theta_t - \gamma \sigma(\alpha^{(i)}) \nabla L_{I_t^{(T)}}(\theta_t))$ $\beta^{(i+1)} = \sigma(\alpha^{(i+1)})$

where $\sigma(\alpha) = \frac{1}{1+e^{-\alpha}}$ is the sigmoid function





POLA: Online Time Series Prediction by Adaptive Learning Rates

Wenyu Zhang

Institute for Infocomm Research, Singapore

Bi-level Optimization in Meta-Stage

POLA-GD Learning Rate Factor Update

Online Prediction Performance (Prequential):

- Pre-trained: no model update in online phase

- Online-RMSprop: element-wise adaptive learning rate

5 0.5

Datasets for POLA Evaluation

Sunspot

• Monthly sunspot number from January 1749 to July 2020 • Historical data length m = 48

• Forecast length n = 5

Household Power Consumption

- Historical data length m = 28
- Forecast length n = 3

Experimental Results

Holt-Winters: exponential smoothing

OR-ELM: online recurrent extreme learning machine

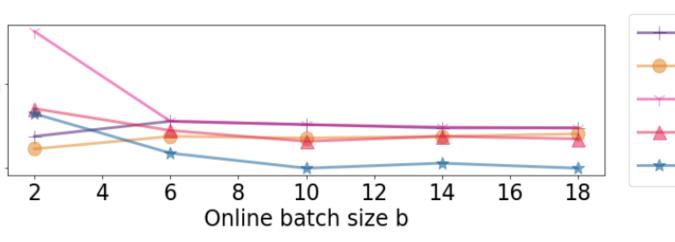
Recurrent neural network

- FTL: Follow-The-Leader retraining every *b* steps
- MAML: meta-learning pre-training
- Online-SGD: constant learning rate
- WG: adapts SGD learning rate based on whether current sample is outlier or change point

METHOD	NORMALIZED RMSE		
	Sunspot	Power	
Holt-Winters	0.991	NA	
OR-ELM	0.822	NA	
Pre-trained	0.572	0.816	
FTL*	0.572	0.820	
MAML	1.295	1.023	
Online-SGD	0.552	0.775	
Online-RMSprop	0.536	0.809	
WG	0.552	NA	
POLA-FS	$\underline{0.532} \pm 0.002$	0.769 ± 0.0	
POLA-GD	$\textbf{0.500} \pm 0.002$	0.773 ± 0.0	

Sensitivity Analysis:

RNN



---- Online-SGD Online-RMSprop — WG POLA-FS

Sunspot Dataset

LSTM & GRU

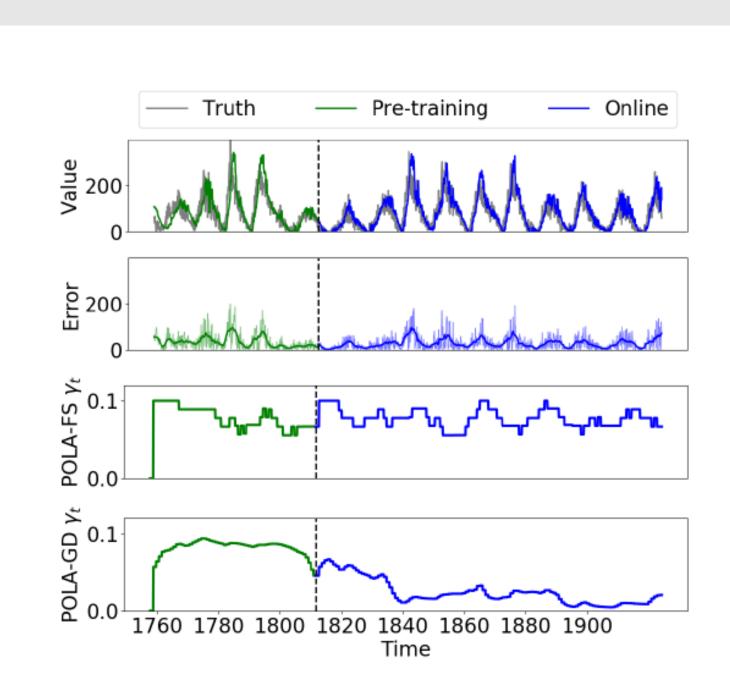
POLA-GD **Gradient Descer** Hyperparameter

References

T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer and K. Funaya, "Robust Online Time Series Prediction with Recurrent Neural Networks," 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA). J. Park and J. Kim, "Online Recurrent Extreme Learning Machine and Its Application to Time-Series Prediction," 2017 International Joint *Conference on Neural Networks (IJCNN).* Anusha Nagabandi, I. Clavera, Simin Liu, Ronald S. Fearing, P. Abbeel, S. Levine and Chelsea Finn, "Learning to Adapt in Dynamic, Real-World Environments through Meta-Reinforcement Learning," 2019 arXiv.

Geoffrey Hinton, Nitish Srivastava and Kevin Swersky, "Neural Network for Machine Learning."

• Daily power consumption (global active power, global intensity, voltage) from December 16, 2006 to November 26, 2010



MODEL	METHOD	NORMALIZED RMSE		
		Sunspot	Power	
LSTM	Online-SGD Online-RMSprop WG	0.532 <u>0.517</u> 0.532	0.821 0.794 NA	
	POLA-FS POLA-GD	$\begin{array}{c} 0.534 \pm 0.009 \\ \textbf{0.512} \pm 0.006 \end{array}$	$\frac{0.802}{0.806} \pm 0.005 \\ 0.806 \pm 0.071$	
GRU	Online-SGD Online-RMSprop WG	0.526 0.521 0.526	0.768 0.786 NA	
	POLA-FS POLA-GD	$\frac{0.508}{\textbf{0.489}} \pm 0.002 \\ \pm 0.002$	$\frac{0.769}{0.768} \pm 0.003$ 0.768 ± 0.003	

# STEPS	LEARNING	NORMALIZED RMSE		
(k)	RATE (η)	Sunspot	Power	
1	0.1	0.515	0.773	
2	0.1	0.504	0.772	
3	0.1	0.500	0.773	
1	0.01	0.525	0.777	
2	0.01	0.520	0.776	
3	0.01	0.516	0.775	