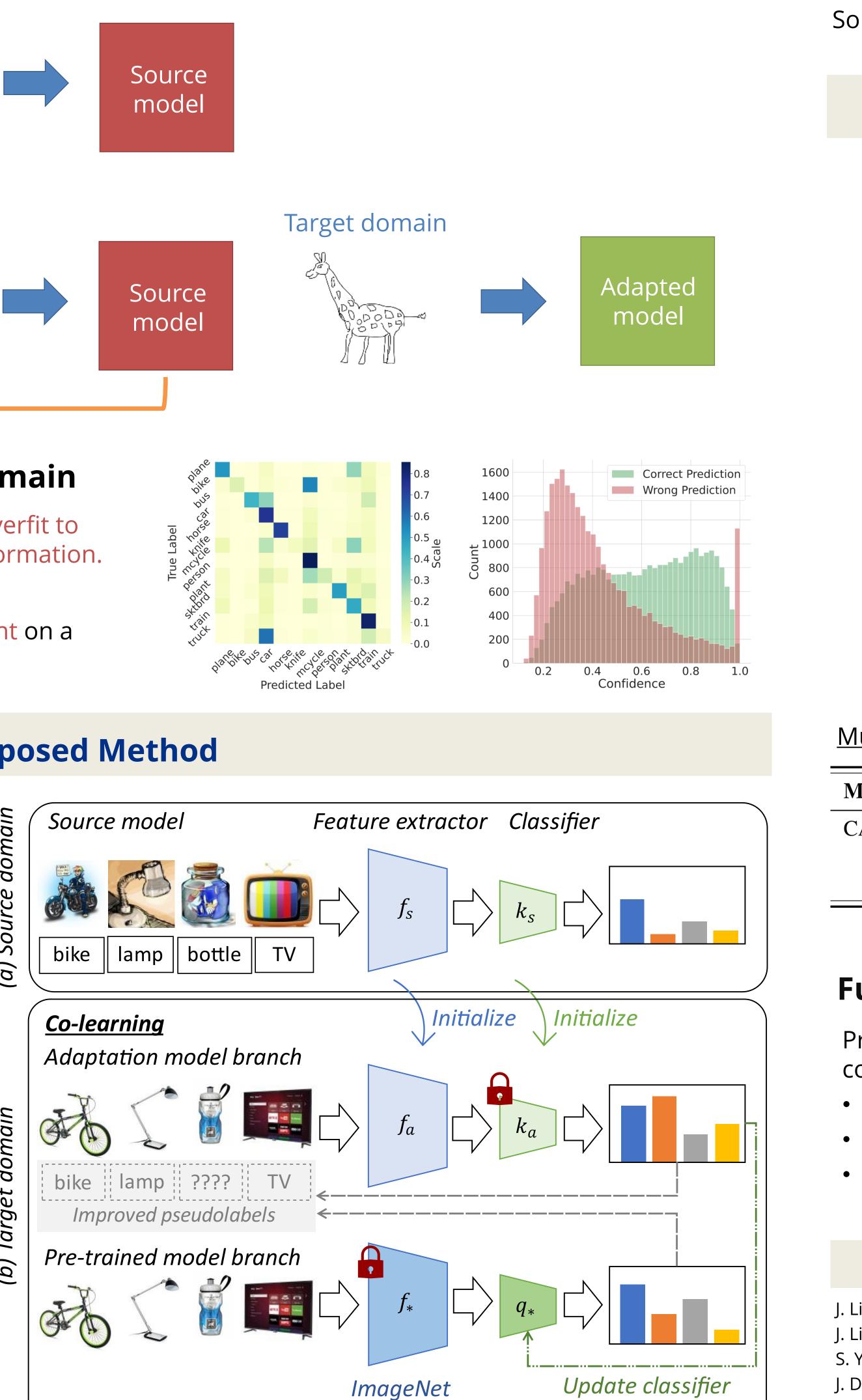

Source-Free Domain Adaptation (SFDA)

The success of deep learning in various applications is typically reliant on the assumption that train (source domain) and test (target domain) data distributions are the same. Deployments in real-world environments can encounter domain shift, hence we need reliable model adaptation to the target domain.

SFDA Framework


Source-training

- scheme with confidence level γ

$\mathbf{\hat{y}_{a}}=\mathbf{\hat{y}}_{*}$	$\mathbf{Conf}(\mathbf{\hat{y}_a}) > \gamma$	$\mathbf{Conf}(\mathbf{\hat{y}}_*) > \gamma$	Pseudolabel \tilde{y}
\checkmark	√ I X	√ / X	\hat{y}_a
×	\checkmark	\checkmark	-
×	\checkmark	×	\hat{y}_a
×	×	\checkmark	\hat{y}_{*}
×	×	×	-

pre-trained

Rethinking the Role of Pre-Trained Networks in Source-Free Domain Adaptation

Wenyu Zhang¹, Li Shen¹, Chuan-Sheng Foo^{1,2}

¹ Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A*STAR) ² Centre for Frontier AI Research (CFAR), Agency for Science, Technology and Research (A*STAR)

Datasets

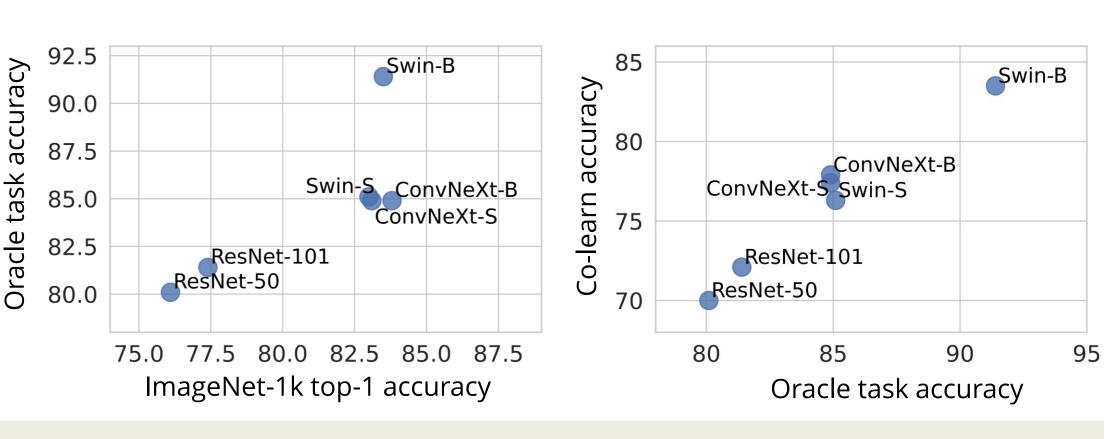
Office-31: 3 domains: Amazon, Webcam, DSLR **Office-Home:** 4 domains: Art, Clipart, Product, Real World **DomainNet:** 4 domains: Clipart, Painting, Real, Sketch **VisDA-C:** Synthetic-to-real transfer

J. Liang, D. Hu, and J. Feng. Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. ICML, 2020. J. Liang, D. Hu, Y. Wang, R. He, and J. Feng. Source data absent unsupervised domain adaptation through hypothesis transfer and labeling transfer. IEEE TPAMI, 2021. S. Yang, Y. Wang, K. Wang, S. Jui, and J. van de Weijer. Attracting and dispersing: A simple approach for source-free domain adaptation. NeurIPS, 2022. J. Dong, Z. Fang, A. Liu, G. Sun, and T. Liu. Confident anchor-induced multi-source free domain adaptation. In NeurIPS, 2021. S. Yang, Y. Wang, K. Wang, S. Jui, and J. van de Weijer. One ring to bring them all: Towards open-set recognition under domain shift. arXiv preprint arXiv:2206.03600, 2022.

Experimental Setup

Source model: ResNet-101 for VisDA-C, ResNet-50 for rest

Results					
Method	SF	Office-31	Office-Home	DomainNet	VisDA-C
GVB-GD	X	89.3	70.4	_	_
GSDA	X	89.7	70.3	-	-
CAN	X	90.6	-	-	87.2
FixBi	X	-	72.7	-	87.2
Source Only	\checkmark	79.2	59.6	55.5	45.9
Co-learn (w/ ResNet)	\checkmark	88.3	70.0	61.9	83.7
Co-learn (w/ Swin-B)	\checkmark	<u>93.6</u>	<u>83.5</u>	71.8	88.2
SHOT	$\overline{\checkmark}$	88.7	71.9	67.3	82.4
w/ Co-learn (w/ ResNet)		$88.8(\uparrow 0.1)$	$72.4~(\uparrow 0.5)$	67.3 (=)	84.1 († 1
w/ Co-learn (w/ Swin-B)		90.9 († 2.2)	75.7 († 3.8)	71.4 († 4.1)	85.2 († 2
SHOT++	\checkmark	89.2	72.7	69.3	86.8
w/ Co-learn (w/ ResNet)		$89.1 (\downarrow 0.1)$	$73.3~(\uparrow 0.6)$	$69.2 (\downarrow 0.1)$	87.4 (↑ 0
w/ Co-learn (w/ Swin-B)		91.2 († 2.0)	76.3 († 3.6)	<u>72.9</u> († 3.6)	88.6 († 1
ĀaD	\checkmark	89.7	71.8	68.3	87.7
w/ Co-learn (w/ ResNet)		90.3 († 0.6)	$72.7~(\uparrow 0.9)$	$70.2~(\uparrow 1.9)$	88.2 (↑ 0
w/ Co-learn (w/ Swin-B)		93.0 († 3.3)	79.0 († 7.2)	72.7 († 4.4)	<u>89.1</u> († 1


Multi-source adaptation on Office-31

thod	$ ightarrow {f A}$	$ ightarrow \mathbf{D}$	$ ightarrow \mathbf{W}$	Avg	Method
iDA	75.7	98.8	93.2	89.2	SFDA algorithm
v/ Co-learn (w/ ResNet-50)	76.8	99.0	93.2	89.7 ($\uparrow 0.5$)	w/ Co-learn (v
// Co-learn (w/ Swin-B)	79.3	99.6	97.4	92.1 († 2.9)	w/ Co-learn (v

Further Analysis:

Preferred characteristics of pre-trained networks for co-learning:

- Dataset similarity (input style and task)
- Robustness against covariate shift
- Different view of feature and classification decision

References

Non-closed-set adaptation on Office-Home

Paper ID: 9728

Co-learning Network	# params
ResNet-50	26M
ResNet-101	45M
Swin-S	50M
ConvNeXt-S	50M
Swin-B	88M
ConvNeXt-B	89M

(Co-learning ResNet follows source model initialization)

	Open-set	Partial-set	Open-partial
m	65.1	78.3	78.3
(w/ ResNet-50)	$66.0~(\uparrow 0.9)$	$78.6~(\uparrow 0.3)$	79.2 († 0.9)
(w/ Swin-B)	66.3 († 1.2)	79.8 († 1.5)	79.0 (↑ 0.7)

(SHOT for open and partial-set, OneRing for open-partial)