

Matrix Completion with Quantified Uncertainty through Low Rank Gaussian Copula

Yuxuan Zhao Madeleine Udell Cornell University

The Paper in 1 Minute

Motivating Questions

- How to impute missing values, unaffected by marginal distributions?
- How to quantify the uncertainty of a single imputation?

Our Contribution

- A new probabilistic method to impute real-valued and ordinal data.
- Confidence intervals for real-valued data.
- Probability lower bound on correct imputation for ordinal data.
- A measure "reliability" for selecting imputed entries with smaller error.

	'		F		
A		-			
в	L		-	-	
C			4		
D 2	. 4				
E			?	-	

laha			**	
John	5	1	3	5
Tom	?	?	?	2
Alice	4	?	3	?

Our Model: PPCA + Gaussian Copula

Given matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$, each row $\mathbf{x}^{\mathbf{i}} = \mathbf{g}(\mathbf{z}^{\mathbf{i}}) = \mathbf{g}(\mathbf{W}\mathbf{t}^{i} + \epsilon^{i}) \in \mathbb{R}^{p}$,

- $\mathbf{t}^i \in \mathbb{R}^k$ i.i.d. from $\mathcal{N}(0, \mathbf{I}_k)$ with k < p.
- ϵ^i i.i.d. from $\mathcal{N}(0, \sigma^2 \mathbf{I}_p)$ and independent from \mathbf{t}^i .
- Elementwise monotone $\mathbf{g}(\mathbf{z}^i) := (g_1(z_1^i, \dots, z_p^i))$ for $\mathbf{z}^i = \mathbf{W}\mathbf{t}^i$.
- $\mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}_p$ has unit diagonals.

Our Imputation: Row-wise Conditional Mean Imputation

For a row $\mathbf{x} \sim \text{LRGC}(\mathbf{W}, \sigma^2, \mathbf{g})$ with observed $\mathbf{x}_{\mathcal{O}}$ and missing entries $\mathbf{x}_{\mathcal{M}}$,

Imputation:
$$\mathbf{x}_{\mathcal{M}} = \mathbf{g}_{\mathcal{M}} \left(\mathbf{E}[\mathbf{z}_{\mathcal{M}} | \mathbf{x}_{\mathcal{O}}] \right)$$

= $\mathbf{g}_{\mathcal{M}} \left(\mathbf{W}_{\mathcal{M}} (\sigma^{2} \mathbf{I}_{k} + \mathbf{W}_{\mathcal{O}}^{\top} \mathbf{W}_{\mathcal{O}})^{-1} \mathbf{W}_{\mathcal{O}}^{\top} \mathbf{E}[\mathbf{z}_{\mathcal{O}} | \mathbf{x}_{\mathcal{O}}] \right)$

- In practice, replace model parameters with their estimates.
- Estimate **g** by matching normal quantiles to observed quantiles in **X**.
- Estimate \mathbf{W}, σ^2 using EM algorithm with closed form update.

How Accurate Is Our Imputation?

Real valued Data

If x_j is missing,

$$g_j \left(\operatorname{E} \left[z_j \mid \mathbf{x}_{\mathcal{O}} \right] - z^* \operatorname{Var} \left[z_j \mid \mathbf{x}_{\mathcal{O}} \right] \right) < x_j < g_j \left(\operatorname{E} \left[z_j \mid \mathbf{x}_{\mathcal{O}} \right] + z^* \operatorname{Var} \left[z_j \mid \mathbf{x}_{\mathcal{O}} \right] \right).$$

• $\alpha \in (0,1) \text{ and } z^* = \Phi^{-1}(1-\frac{\alpha}{2}).$

Ordinal Data

If x_i is missing, the LRGC imputation \hat{x}_i satisfies:

$$\Pr(\hat{x}_j = x_j) \ge 1 - \operatorname{Var}[z_j \mid \mathbf{x}_{\mathcal{O}}] / d_j^2$$
, where $d_j = \operatorname{dist}(\operatorname{E}[z_j \mid \mathbf{x}_{\mathcal{O}}], \mathbf{S}_j)$.

• S_j is the set of points that cut normal z_j into ordinal x_j .

Which LRGC Imputed Entries Are Most Reliable?

Real valued Data

reliability at missing
$$(i,j)$$
:
$$\frac{||\mathbf{P}_{\Omega^c/(i,j)}(D_{\alpha})||_F}{||\mathbf{P}_{\Omega^c/(i,j)}(\hat{\mathbf{X}})||_F}.$$

- Ω stores observed locations. D_{α} stores the confidence interval length at missing entries. P_A projects on the set A: it sets entries not in A as 0.
- An imputed entry is more reliable if evaluation removing it is worse.

Ordinal Data

reliability at missing $(i, j) : 1 - \operatorname{Var}\left[z_j^i \mid \mathbf{x}_{\mathcal{O}_i}^i\right] / d_{ij}^2$

• An imputed entry is more reliable if it has larger probability to be correct.

Results: Confidence Intervals

Table 1: 95% Confidence intervals on synthetic data: monotonically transform noisy low rank Gaussian matrix.

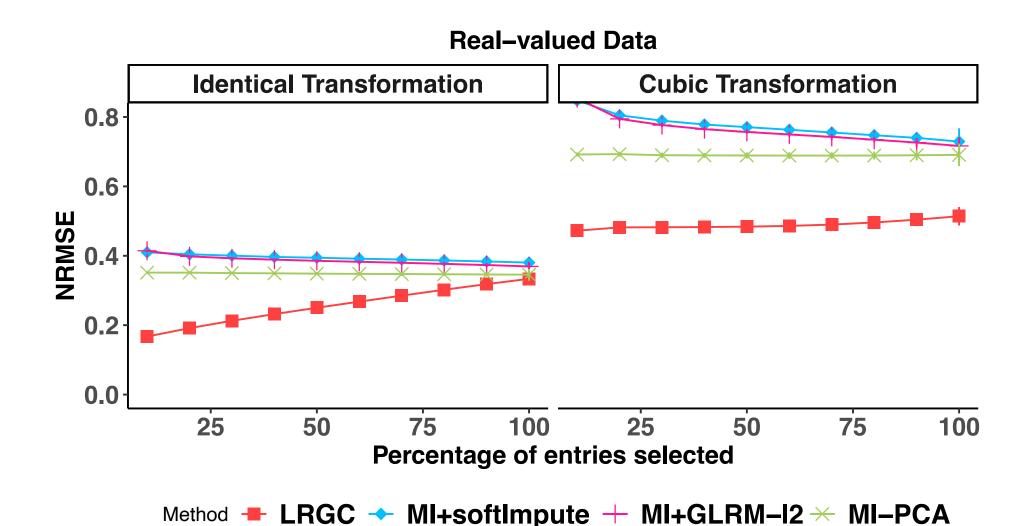
Identical Transformation	LRGC	PPCA	LRMC	MI-PCA
Empirical coverage rate	0.927(.002)	0.940(.001)	0.878(.006)	0.933(.002)
Interval length	1.273(.004)	1.264(.004)	1.129(.015)	1.267(.004)
Run time in seconds	6.9(1)	3.4(1)	2.7(0)	190(15)
Cubic Transformation	LRGC	PPCA	LRMC	MI-PCA
Empirical coverage rate	0.927(.002)	0.943(.002)	0.925(.004)	0.948(.002)
Interval length	3.614(.068)	9.086(.248)	6.546(.191)	9.307(.249)
Run time in seconds	7.2(1)	0.4(0)	3(1)	220(30)

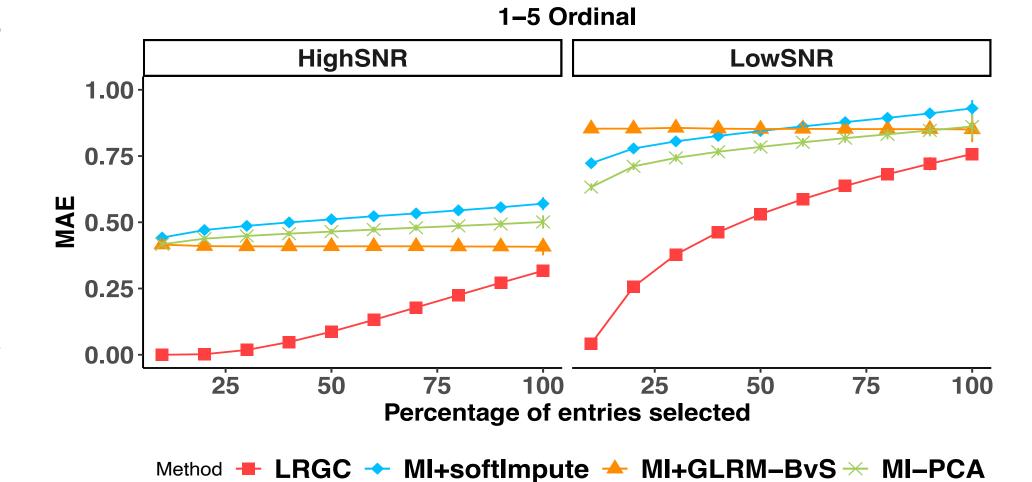
Takeaway:

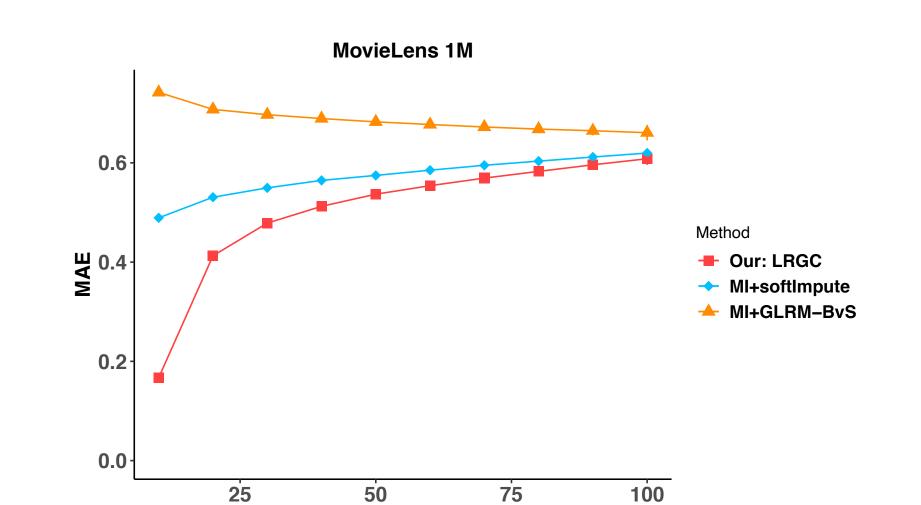
- Marginal transformation can distort many imputation methods, but not ours!
- Our reliability predicts imputation accuracy well, while MI sample variance cannot!

Results: Select Reliable Imputed Entries

- Evaluate the imputation error on the subset of m% entries for which method's associated uncertainty metric indicates highest reliability.
- For multiple imputation (MI), lower sample variance indicates higher reliability.







Percentage of Entries Selected