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The Paper in 1 Minute

Motivating Questions

e How to impute missing values, unaffected by marginal distributions?

e How to quantify the uncertainty of a single imputation?
Our Contribution

e A new probabilistic method to impute real-valued and ordinal data.
e Confidence intervals for real-valued data.

e Probability lower bound on correct imputation for ordinal data.

e A measure “reliability” for selecting imputed entries with smaller error.
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Our Model: PPCA + Gaussian Copula

Given matrix X € R"*?, each row x! = g(z') = g(Wt! + ¢') € R,
e t' ¢ R*iid. from N(0,I;) with k < p.

e ¢’ iid. from N (0,0°],) and independent from t°.

o Elementwise monotone g(z') := (g1(21,...,2},)) for z* = Wt*.

e WW' + o2I, has unit diagonals.

Our Imputation: Row-wise Conditional Mean Imputation

For a row x ~ LRGC(W, 02, g) with observed xp and missing entries x4,

Imputation: xx = g (Elzm|x0])
= gm (Wm0l + WoWo) "W Elzo[x0))
e In practice, replace model parameters with their estimates.
e Lstimate g by matching normal quantiles to observed quantiles in X.

o Estimate W, o2 using EM algorithm with closed form update.

How Accurate Is Our Imputation?

Real valued Data

If x; is missing,
9; (Elz; | xo] — 2" Var [z; | x0]) < z; < g; (E[z; | x0] + 2" Var |z, | x0]).
e ac(0,1)and z* =27 1(1 - %).

Ordinal Data

If x; is missing, the LRGC imputation z; satisfies:
Pr(&; = x;) > 1 — Var|[z; | xo] /d?, where d; = dist(E [z, | x0],S;).

e S; is the set of points that cut normal z; into ordinal x;.

Which LRGC Imputed Entries Are Most Reliable?

Real valued Data

|Pae i) (Da) || F
|Pae i) (X)|| 7

reliability at missing (¢, j) :

e () stores observed locations. D, stores the confidence interval length at

missing entries. P4 projects on the set A: it sets entries not in A as 0.

e An imputed entry is more reliable if evaluation removing it is worse.

Ordinal Data

reliability at missing (i, 7) : 1 — Var [z} | xb.| /d?

e An imputed entry is more reliable if it has larger probability to be correct.

Results: Confidence Intervals

Table 1: 95% Confidence intervals on synthetic data: monotonically transform
noisy low rank Gaussian matrix.

Identical Transformation LRGC PPCA LRMC MI-PCA
Empirical coverage rate  0.927(.002) 0.940(.001) 0.878(.006) 0.933(.002)
Interval length 1.273(.004)  1.264(.004) 1.129(.015) 1.267(.004)
Run time in seconds 6.9(1) 3.4(1) 2.7(0) 190(15)
Cubic Transformation LRGC PPCA LRMC MI-PCA
Empirical coverage rate ~ 0.927(.002) 0.943(.002) 0.925(.004) 0.948(.002)
Interval length 3.614(.068) 9.086(.248) 6.546(.191)  9.307(.249)
Run time in seconds 7.2(1) 0.4(0) 3(1) 220(30)
Takeaway:

e Marginal transformation can distort many imputation methods, but not ours!
e Our reliability predicts imputation accuracy well, while MI sample variance cannot!
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Results: Select Reliable Imputed Entries

e Evaluate the imputation error on the subset of m% entries for

which method’s associated uncertainty metric indicates highest
reliability:.

e For

multiple imputation (MI), lower sample variance indicates

higher reliability.
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