
GAUSSIAN COPULA FOR MIXED DATA WITH
MISSING VALUES: MODEL ESTIMATION AND

IMPUTATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Yuxuan Zhao

May 2022

© 2022 Yuxuan Zhao

ALL RIGHTS RESERVED

GAUSSIAN COPULA FOR MIXED DATA WITH MISSING VALUES: MODEL

ESTIMATION AND IMPUTATION

Yuxuan Zhao, Ph.D.

Cornell University 2022

Missing data imputation forms the first critical step of many data analysis

pipelines. For practical applications, imputation algorithms should produce im-

putations that match the true data distribution and handle data of mixed types.

This dissertation develops new imputation algorithms for data with many dif-

ferent variable types, including continuous, binary, ordinal, and truncated and

categorical values, by modeling data as samples from a Gaussian copula model.

This semiparametric model learns the marginal distribution of each variable to

match the empirical distribution, yet describes the interactions between vari-

ables with a joint Gaussian that enables fast inference, imputation with confi-

dence intervals, and multiple imputation. This dissertation also develops spe-

cialized extensions to handle large datasets (with complexity linear in the num-

ber of observations) and streaming datasets (with online imputation).

BIOGRAPHICAL SKETCH

Yuxuan Zhao was born and raised in Bozhou, Anhui, China. After graduating

from junior high school in his hometown in 2010, he enrolled in Hefei No.1 high

school in Hefei, the provincial capital city of Anhui. In 2013, he graduated from

high school and began his undergraduate study in Nankai university, majoring

in mathematics. During his four years of undergraduate study, he discovered

that he was more interested in applying mathematics to real-world problems

than theoretical mathematics. He graduated from Nankai University in 2017

and then went on to Cornell University for his Ph.D. in statistics. There he has

been advised by Prof. Madeleine Udell. His five years of academical statis-

tics research are dedicated to new methodology for heterogeneous data. After

graduation, he will keep solving real-world problems using mathematics and

statistics as an industry researcher.

iii

Dedicated to my father Jin Zhao and my mother Weili Wang.

iv

ACKNOWLEDGEMENTS

It has not been easy for me to complete this Ph.D., and it feels unreal when

I finally reach the finish line. It’s been a long journey filled with ignorance,

confusion, disorientation, and exhaustion. I am truly grateful to everyone who

helped me on this journey. Now I can confidently identify myself as a qualified

doctor.

First of all, I am extremely grateful to my advisor, Madeleine Udell, for her

guidance in research and constant support, encouragement and trust. She is

passionate on research and always has new ideas. The majority of my research

work arose as results of our discussion. She is one of the best academic writers

and speakers I have ever met and has taught me a lot on how to write a good

paper and give a good presentation. Those knowledge would benefit me for

life.

I also want to thank my committee members Thorsten Joachims and Yang

Ning. They graciously answered my research questions and provided numer-

ous valuable research suggestions, which aided in the development of this dis-

sertation. I am also grateful to David Matteson for his mentoring at my early

Ph.D. stage. Additionally, I want to thank my collaborators Benjamin Risk and

Alex Townsend for the effort we put together to have a good paper.

I also want to express my gratitude to my friends at Cornell: Xin Bing, Huijie

Feng, Mo He, Yujia Ma, Xiangxiang Wang, Peter Wu, Yaosheng Xu, and many

more. Their presence helps me adapt to the life in a new country quickly and

brightens my Ph.D. life. Although they are now scattering all over the world,

my time with them in Ithaca remains vivid in memory. It has been a great plea-

sure to get to know them in the gorgeous Ithaca.

My father, Jin Zhao, my mother, Weili Wang, and my partner, Xiaoyi Zhu,

v

are the people I owe the most to. My parents always show me unconditional

love. Many people in their generation who grew up in small towns of China did

not approve of sending their children abroad for a five-year Ph.D. program, but

my parents have always respected my decision and supported me in becoming

who I want to be. My partner, Xiaoyi, has been with me through many of my

darkest moments in my Ph.D. time. She is always there to raise me up. My life

has became much more colorful since she has been in it. Together each of us

becomes a better and happier person.

vi

CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Contents . vii
List of Tables . x
List of Figures . xii

1 Introduction 1
1.1 Contribution . 2
1.2 Background . 4

1.2.1 Missing mechanism . 4
1.2.2 Notation and evaluation metric 5

2 Imputation via Gaussian copula 7
2.1 Introduction . 7
2.2 Gaussian Copula model . 12
2.3 Imputation . 18
2.4 Parameter estimation . 20

2.4.1 Marginal transformation estimation 20
2.4.2 Copula correlation estimation 22
2.4.3 Approximating truncated normal mean and covariance . . 27

2.5 Experiments . 30
2.5.1 Synthetic data . 30
2.5.2 General Social Survey (GSS) data 32
2.5.3 MovieLens 1M data . 34
2.5.4 Music Auto-tagging: CAL500exp data 35
2.5.5 More ordinal data and dixed data 36

2.6 Discussion . 37

3 Imputation via Low Rank Gaussian Copula 39
3.1 Introduction . 39
3.2 Low rank Gaussian copula model 41
3.3 Parameter estimation . 43

3.3.1 EM algorithm for W and σ2 43
3.4 Imputation error bound . 47
3.5 Experiments . 49

3.5.1 Synthetic experiments . 49
3.5.2 Movielens 1M . 51

vii

4 Imputation Uncertainty Quantification 52
4.1 Introduction . 52
4.2 Imputation uncertainty measure 54
4.3 Experiments . 57

4.3.1 Synthetic experiments . 59
4.3.2 MovieLens 1M dataset . 60

5 Online Imputation 62
5.1 Introduction . 62
5.2 Parameter estimation from online data 64

5.2.1 Online marginal transformation estimation 65
5.2.2 Online copula correlation estimation 66

5.3 Experiments . 70
5.3.1 Offline synthetic experiment 72
5.3.2 Online synthetic experiment 73
5.3.3 Offline real data experiment 74
5.3.4 Online real data experiment 75

5.4 Discussion . 77

6 Online Dependence Change Point Detection 78
6.1 Introduction . 78
6.2 Monte Carlo test for change point detection 79
6.3 Sequential multiple change points detection 81
6.4 Experiments . 83
6.5 Discussion . 84

7 Extending Gaussian Copula to Handle Categorical Data 86
7.1 Introduction . 86
7.2 Categorical variables as transformed Gaussian 89

7.2.1 Univariate categorical variable 89
7.2.2 Multivariate categorical vector 90
7.2.3 Mixed data with categorical and ordered variables 91

7.3 Missing data imputation . 92
7.4 Parameter estimation . 94

7.4.1 Marginal estimation for categorical variables 95
7.4.2 Copula correlation estimation 97
7.4.3 Truncated normal with categorical variables 98

8 Software 100
8.1 Introduction . 100
8.2 Software usage . 101

8.2.1 Basic usage . 102
8.2.2 Acceleration for large datasets 111
8.2.3 Imputation for streaming datasets 115

viii

8.2.4 Imputation uncertainty . 118
8.3 Discussion . 123

A Appendix of Chapter 2 124
A.1 Truncated normal moments approximations 124
A.2 Computational details . 125
A.3 Experimental details . 126
A.4 Proof of Lemmas . 128

B Appendix of Chapter 3 132
B.1 Proofs . 132
B.2 Additional experiments . 138

B.2.1 LRGC imputation under correct model 138
B.2.2 Imputation error versus reliability shape with varying

number of ordinal levels . 140
B.3 Experimental details . 140

C Appendix of Chapter 4 144
C.1 Proofs . 144

D Appendix of Chapter 5 147
D.1 Proofs . 147
D.2 Additional experiments . 155

D.2.1 Acceleration of parallelism 155
D.2.2 Robustness to varying data dimension, missing ratio and

missing mechanism . 155

E Appendix of Chapter 7 158

ix

LIST OF TABLES

2.1 For any random variable x admitting a total order, there exists
a unique monotonic transformation f such that f (z) = x for a
random standard Gaussian z. For each data type of x, this table
includes its distribution specification, the marginal f , and the
set inverse f −1(x) = {z : f (z) = x} of the marginal. Three dif-
ferent types of truncated variables are summarized together: (1)
α = −∞ and pα = 0 corresponds to lower truncated x; (2) β = ∞
and pβ = 0 corresponds to upper truncated x; (3) finite α, β and
positive pα, pβ corresponds to two sided truncated x. Φ(·) denotes
the CDF of a standard normal variable. 15

2.2 Imputation Error on Five GSS Variables 33
2.3 Imputation Error on 207 Movies 35
2.4 Imputation Error (SMAE) on CAL500exp. 36
2.5 Imputation Error on More Ordinal and Mixed Datasets. 36
2.6 Imputation Error on More Ordinal and Mixed Datasets. 37

3.1 Imputation error (NRMSE for continuous and MAE for ordinal)
reported over 20 repetitions, with rank r for available methods.
GLRM methods are trained at rank 199. 50

3.2 Imputation error for MovieLens 1M over 5 repetition. Run time
is measures in minutes. 51

4.1 95% Confidence intervals on synthetic continuous data over 20
repetitions. 60

5.1 Mean(sd) for runtime, imputation error of each data type for
synthetic offline data over 10 trials. 73

5.2 Mean(sd) for runtime and imputation error on a subset of Movie-
Lens1M data over 10 trials. 75

B.1 Imputation error (NRMSE) on synthetic continuous data over 20
repetitions. 139

B.2 Run time (in seconds) for synthetic data at the best tuning pa-
rameter; mean (variance) reported over 20 repetitions. 142

D.1 Mean(sd) runtime of Gaussian copula methods for offline
datasets over 10 trials. In each cell, the runtime with 2 cores fol-
lows that with 1 core. 155

D.2 A MNAR mechanism used. For each variable, the missing prob-
ability p of an entry z solely depends on its own value. Entries
with smaller values have high missing probabilities. 156

D.3 Mean(sd) for imputation error for additional synthetic online
data experiments w.r.t. different missing ratios over 10 trials. . . 156

x

D.4 Mean(sd) for imputation error for additional synthetic online
data experiments w.r.t. different number of data points over 10
trials. 157

D.5 Mean(sd) for imputation error for additional synthetic online
data experiments w.r.t. different data dimensions over 10 trials. 157

D.6 Mean(sd) for imputation error for additional synthetic online
data experiments w.r.t. different missing mechanisms over 10
trials. 157

xi

LIST OF FIGURES

2.1 Draw (z1, z2) from a binormal with correlation 0.8. Discretize z1

to x1, z2 to x2 on random cutoffs. Top two and bottom left panels
plot one repetition. Dashed lines mark the cutoffs. Bottom right
panel plots the sample correlation over 100 repetitions. Dashed
line marks the truth. 9

2.2 Cutoff function f (·) with cutoffs {−1, 1}maps continuous z to or-
dinal x ∈ {1, 2, 3}. 14

2.3 Three monotoic transformations of a Gaussian variable. The
third column depicts the transformations that map the data dis-
tribution, visualized as both PDF (histogram approximation)
and CDF (analytical form), in the left two columns to the data
distribution in the right two columns. 16

2.4 Scatterplot of samples from several 2D Gaussian copula mod-
els with different marginals. The data is generated by sampling
(z1, z2) from a 2D Gaussian distribution with zero mean, unit vari-
ance and .65 correlation and computing x1 = f1(z1) and x2 =

f2(z2), where f1 and f2 denote the transformations correspond-
ing to the marginals for each model. For Gaussian marginals
(1st row and 1st column), the transformation is the identity. For
other marginals, the corresponding transformations are plotted
as the third column of Fig. 2.3. 17

2.5 Gaussian copula imputation for a 5-dim partially observed
mixed vector. Curves indicate the marginal probability density
functions (for continuous) or probability mass function (for or-
dinal). First, compute the set of the latent normal vector which
maps to the observation (x1, x3 and x4) through f−1. Second, com-
pute the conditional mean of the latent normal vector at missing
locations (ẑ2 and ẑ5) given the copula correlation Σ and that z1, z3

and z4 only take values from the computed inverse set. Lastly,
map the conditional mean through f to obtain the imputations
x̂2 and x̂5. 20

2.6 Copula-EM vs sbgcop: The imputation error for each data type
and estimated correlation error over time cost. Dashed line indi-
cates the final error of Copula-EM. 32

2.7 Copula-EM vs nonparametric algorithms: The imputation error
for each data type on synthetic data. 33

2.8 High Correlations (| · | > 0.3) of 5 interesting variables from GSS
data are plotted. 34

4.1 Imputation error on the subset of m% entries for which method’s
associated uncertainty metric indicates highest reliability, re-
ported over 20 repetitions (error bars almost invisible). 59

xii

4.2 Imputation error on the subset of m% entries for which method’s
associated uncertainty metric indicates highest reliability, re-
ported over 5 repetitions (error bars almost invisible). 61

5.1 Mean imputation error and change point tracking statistics over
10 trials for online synthetic datasets. Each point stands for an
evaluation over a data batch of 40 points. 74

5.2 The imputation error for the DJIA daily price (left) and the DJIA
daily log-returns (right), averaged over all stocks. Each point
stands for an evaluation over a time interval of 40 points. 76

6.1 Mean change point tracking statistics over 10 trials for online
synthetic datasets. Each point stands for an evaluation over a
data batch of 40 points. 85

6.2 Change points from online EM detection (ours) and BOCP over
10 trials in online synthetic experiments. Each bar stands for a
decision over a data batch of 40 points. 85

8.1 Histogram plots for GSS variables. There are 2538 samples in total.103
8.2 The estimated latent copula correlation among GSS variables. . . 105
8.3 The imputation error among GSS variables is plotted w.r.t. the

number of iterations run in gcimpute. Satisfactory results
emerge after four iterations. 110

8.4 Values of eight selected FRED economic variables from 2008-06-
03 to 2020-12-31 are plotted. 116

B.1 Imputation error on the subset of m% most reliable entries, re-
ported over 5 repetitions. 141

B.2 Imputation error over a key tuning parameter reported over 20
repetitions. The error bars ara invisible. The penalization param-
eter λ is plotted over the log-ratios log(α) which satisfies λ = αλ0. 143

xiii

CHAPTER 1

INTRODUCTION

Missing data is ubiquitous in modern datasets, yet most machine learning algo-

rithms and statistical models require complete data. Thus missing data imputa-

tion forms the first critical step of many data analysis pipelines. The difficulty is

greatest for mixed datasets, including continuous, binary, ordinal, count, trun-

cated and categorical variables. Mixed datasets may appear either as a single

dataset recording different types of attributes or an integrated datasets from

multiple sources. For example, social survey datasets are generally mixed since

they often contain age (continuous) and Likert scales (ordinal) measuring how

strongly a respondent agrees with certain stated opinions, such as the five cate-

gory scale: strongly disagree, disagree, neither agree or disagree agree, strongly

agree. The Cancer Genome Atlas Project is an example of integrated mixed

dataset: it contains gene expression (continuous), mutation (binary) and mi-

croRNA (count) data. Imputation may be challenging even for datasets with

only continuous variables if variables have very different scales and variability.

The Gaussian copula model nicely addresses the challenges of modeling

mixed data by separating the multivariate interaction of the variables from their

marginal distributions [60, 45, 30]. Specifically, this model posits that each data

vector is generated by first drawing a latent Gaussian vector and then trans-

forming it to match the observed marginal distribution of each variable. A cop-

ula correlation matrix fully specifies the multivariate interaction and is invariant

to strictly monotonic marginal transformations of the variables.

1

1.1 Contribution

This dissertation develops methodology for estimating the Gaussian copula

model from incomplete data, imputing the missing values using the estimated

model and quantifying the imputation uncertainty. All proposed methodolo-

gies handle mixed datasets that may contain arbitrary continuous variables,

ordinal variables (including binary as a special case), and truncated, and cat-

egorical variables naturally.

Chapter 2 introduces the definition of Gaussian copula model for mixed

data, how to estimate it from incomplete data and how to impute missing val-

ues using an estimated model. The methodology developed in this chapter is

mostly suited for skinny datasets, those have no more than 1000 features, since

the model estimation algorithm has cubic time complexity in terms of the num-

ber of features. Chapter 3 instead aims at wide (or high dimensional) datasets

with many features. In this chapter, we develop the low rank Gaussian copula

model which imposes a low rank structure on the copula correlation matrix, and

thus reduces the model estimation algorithm’s cubic time complexity to linear,

in terms of the number of features. We also provide theoretical guarantee on

the imputation quality for incomplete data sampled from the low rank Gaus-

sian copula model. Chapter 4 derives two types of measures to quantify the

uncertainty of Gaussian copula model based imputation. For a specific miss-

ing entry, the variability of its imputation error is characterized. For example,

imputation confidence intervals are provided. For multiple missing entries, a

measure ranking the relative imputation quality is provided. One can use this

measure to select the most reliable imputed entries, which may be useful for

the top-k recommendation task in collaborative filtering. Chapter 5 develops an

2

online missing data imputation algorithm, by incrementally updating the Gaus-

sian copula model over sequentially arrived mini-batch of data. Concretely, we

maintain an estimated Gaussian copula model, and as new data comes in, we

immediately impute its missing entries using the maintained model the and

then update the model using the new data. We also develop a much faster

model estimation algorithm than that in Chapter 2 using the incremental up-

date. By tracking the magnitude of the copula correlation update between two

mini-batch of data, Chapter 6 provides a new method to detect change points

in the multivariate dependence structure in online data. Before Chapter 7, all

methods assume that every variable admits a total order, which excludes cat-

egorical variables. Chapter 7 shows how to extend a Gaussian copula model

to handle categorical variables, and thus all aforementioned methods can deal

with categorical and ordered variable mixed data. At last, Chapter 8 introduces

our implemented software packages in Python and R and demonstrates their

usage.

This dissertation is based on [103, 102, 105, 104] but reorganizes their con-

tents for a coherent and concise presentation. Generally speaking, Chapter 2

comes from [103], Chapter 3 and Chapter 4 come from [102]. Chapter 5 and

Chapter 6 come from [105]. Chapter 8 comes from [104]. Every paper, however,

contributes to every chapter in some way. An exception is Chapter 7: it is our

most recent work, and it has not yet been made public outside of this disserta-

tion.

3

1.2 Background

1.2.1 Missing mechanism

Missing data mechanisms include: (1) missing completely at random (MCAR)

meaning the missingness does not depend on the data value; (2) missing at

random (MAR), meaning the missingness only depends on the observed data

value; (3) missing not at random (MNAR), meaning the missingness depends

on the missing data value [59]. As it will be stated in Section 2.2, the Gaussian

copula model has two parts of parameters: a vector-valued function f, which

describes the marginal distribution, and a correlation matrix Σ, which describes

the multivariate dependence structure. The MCAR assumption is needed to

consistently estimate f. If the true f is known, the MAR assumption suffices to

consistently estimate Σ. We assume MCAR throughout this dissertation.

Extending our methods to MNAR setting is important future work. How-

ever, we find empirically our imputation methods developed under MCAR still

performs reasonably well in the MNAR setting. Indeed, many different miss-

ing patterns may be called MNAR, and imputation methods designed for one

MNAR mechanism do not necessarily outperform on other MNAR data due to

this heterogeneity.

4

1.2.2 Notation and evaluation metric

Notation

Define [p] = {1, . . . , p} for p ∈ N+. Let x = (x1, . . . , xp) ∈ Rp be a random vector.

Let X ∈ Rn×p be a matrix whose rows correspond to observations and columns

to variables. We refer to the i-th row, j-th column, and (i, j)-th element as xi,X j

and xi
j, respectively. We use f for a function mapped into R (scalar function)

and f = (f1, . . . , fp) for a function mapped into Rp (vector function).

For a subset I ⊂ [p], we use xI to denote the subvector of x with entries in I

for x ∈ Rp, WI to denote the submatrix of W with rows in I and WI,J to denote

the submatrix of W with rows in I and columns in J for matrix W ∈ Rp×k, fI to

denote the subvector of f with entries in I for vector function f ∈ Rp.

LetM,O ⊂ [p] denote missing and observed dimensions, respectively. Thus

x = (xO, xM) for a random vector x, and xi = (xi
Oi
, xi
Mi

) for a realized sample xi.

We use ϕ and Φ for the probability density function (PDF) and cumulative

distribution function (CDF) of the one-dimensional standard normal. We use

ϕ(·; µ,Σ) for the PDF of a normal vector with mean µ and covariance matrix Σ.

Denote the vector ℓ2 norm as || · ||2 and the matrix Frobenius norm as || · ||F .

The elliptope E = {Z ⪰ 0 : diag(Z) = 1} is the set of correlation matrices.

For a positive definite covariance Σ, we use PE(Σ) to denote its corresponding

correlation matrix: for D = diag(Σ), PE(Σ) = D−1/2ΣD−1/2. For a subsetΩ ⊂ [n]×[p]

containing two dimensional coordinates and matrix X ∈ Rn×p, we use PΩ(X) to

denote the matrix that agrees with X at coordinates in Ω but 0 otherwise.

5

We say random variables x = y and random vectors x = y if their CDF match.

Evaluation metric

For incomplete data observation X ∈ Rn×p observed at locations Ω and its im-

putation X̂ which agrees with X at Ω, we use metrics to the magnitude of their

error. When all columns of X are approximately in the same scale, we mostly use

the popular mean absolute error, mean squared error (MSE), root mean squared

error (RMSE), and normalized root mean squared error (NRMSE), defined as

||PΩc(X − X̂)||F/||PΩc(X)||F . When columns of X have very different scales or data

types, to measure the imputation error on columns in I, we define and use a

scaled mean absolute error (SMAE):

SMAE :=
1
|I|

∑
j∈I

||X̂ j − X j||1

||Xmed
j − X j||1

,

where X̂ j,Xmed
j are the imputed values and observed median for j-th column,

respectively. The estimator’s SMAE is smaller than 1 if it outperforms column

median imputation. For each data type, the SMAE can be computed on corre-

sponding columns.

6

CHAPTER 2

IMPUTATION VIA GAUSSIAN COPULA

This chapter introduces the general framework to fit a Gaussian copula model

and impute missing values for continuous, ordinal (including binary and count

as special cases) and truncated mixed data. It is mostly based on [103] except

that the support for truncated variables is based on [104].

We introduce the Gaussian copula model for mixed data in Section 2.2, then

show how to impute the missing values with given model estimates in Sec-

tion 2.3. The model estimation algorithms come next in Section 2.4.

2.1 Introduction

Missing data is endemic and usually represents a large proportion in modern

datasets. Missing value imputation generally precedes other analysis, since

most machine learning algorithms and statistical models require complete ob-

servations. Imputation quality can strongly influence subsequent analysis. The

difficulty in imputing missing data is greatest for mixed datasets: those that in-

clude real, Boolean, ordinal, count and truncated data — are a fixture of modern

data analysis. Ordinal data is particularly common in survey datasets. For ex-

ample, Netflix users rate movies on a scale of 1-5. Social surveys may roughly

bin respondents’ income or level of education as an ordinal variable, and ordi-

nal Likert scales measure how strongly a respondent agrees with certain stated

opinions. Binary variables may be considered a special case of an ordinal with

two levels. Health data often contains ordinals that result from patient surveys

7

or from coarse binning of continuous data into, e.g., cancer stages 0–IV or over-

weight vs obese patients.

To exploit the information in mixed data, imputation must account for the

interaction among variables of different types. Unfortunately, the joint distribu-

tion of mixed data can be complex. Existing parametric models are either too

restrictive [59] or require priori knowledge of the data distribution [93]. Non-

parametric methods, such as MissForest [84], based on random forests, and im-

puteFAMD [4], based on principal components analysis, tend to perform better.

However, these two methods treat ordinal data as categorical, losing valuable

information about the order. Further, they can only afford a limited number of

categories.

It is tempting, but dangerous, to treat ordinal data with many levels as con-

tinuous. For example, the ordinal variable “Weeks Worked Last Year” from the

General Social Survey dataset takes 48 levels, but 74% of the population worked

either 0 or 52 weeks. Imputation that treats this variable as continuous (e.g., im-

puting with the mean) works terribly! As another example, consider using low

rank matrix completion [16, 76, 53, 64] to impute missing entries in a movie rat-

ing datasets using a quadratic loss. This loss implicitly treats ratings encoded as

1–5 as numerical values, so the difference between ratings 3 and 4 is the same

as that between ratings 4 and 5. Is this true? How could we tell?

A more sensible (and powerful) model treats ordinal data as generated by

thresholding continuous data, as in [77, 78]. Figure 2.1 illustrates how corre-

lations can by garbled by treating such data as continuous. Our work builds

on this intuition to model mixed data through the Gaussian copula model

[45, 60, 30, 34], which assumes the observed vector is generated by transform-

8

−2

−1

0

1

−2 −1 0 1 2
normal: z1

no
rm

al
: z

2

sample correlation: 0.81

1

2

3

−2 −1 0 1 2
normal: z1

or
di

na
l:

x2

sample correlation: 0.62

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0
ordinal: x1

or
di

na
l:

x2

sample correlation: 0.49

0.25

0.50

0.75

z1~z2 x2~z1 x1~x2

sa
m

pl
e

co
rr

el
at

io
n

Figure 2.1: Draw (z1, z2) from a binormal with correlation 0.8. Discretize z1 to x1,
z2 to x2 on random cutoffs. Top two and bottom left panels plot one repetition.
Dashed lines mark the cutoffs. Bottom right panel plots the sample correlation
over 100 repetitions. Dashed line marks the truth.

ing each marginal of a latent normal vector. Under this model, we associate

each variable (both ordinal and continuous) with a latent normal variable. Each

ordinal level corresponds to an interval of values of the corresponding latent

normal variable.

Contribution

We propose an efficient EM algorithm to estimate a Gaussian copula model with

incomplete mixed data and show how to use this model to impute missing val-

9

ues. Our method outperforms many state-of-the-art imputation algorithms for

various real datasets including social survey data (whose columns have a vary-

ing number of ordinal levels), movie rating data (high missing ratio), music tag-

ging data (binary data), etc. The proposed method has several advantages: the

method has no hyper-parameters to tune and is invariant to coordinate-wise

monotonic transformations in the data. Moreover, the fitted copula model is

interpretable and can reveal statistical associations among variables, which is

useful for social science applications. To our best knowledge, our proposed al-

gorithm is the first frequentist approach to fit the Gaussian copula model with

incomplete mixed data. Moreover, it is much faster than the existing Bayesian

MCMC algorithm for the same model [45]; given the same time budget, our

method produces substantially more accurate estimates.

Related work

Modeling mixed data with the Gaussian copula model has been studied using

both frequentist approaches [30, 34] and Bayesian approaches [45, 68, 25]. In

[68, 25], the authors further assume the latent normal vector is generated from

a factor model. When all variables are ordinal, the Gaussian copula model is

equivalent to the probit graphical model [39]. However, all these previous work

focuses on model estimation and theoretical properties of the estimators, and

has overlooked the potential of these models for missing value imputation.

In fact, the frequentist parameter estimation methods proposed [30, 34, 39]

assume complete data; so these methods cannot perform imputation. Among

Bayesian approaches, MCMC algorithms [45, 68, 25] can fit the copula model

with incomplete data and impute missing values. However, to use these mod-

10

els, one must select the number of factors for the models in [68, 25]. The sen-

sitivity of these models to this parameter makes it a poor choice in practice for

missing value imputation.

The implementation of [45] is still the best method available to fit a Gaus-

sian copula model for incomplete mixed data. An important case study of this

method [46] applies the multiple imputation to sociological data analysis. How-

ever, the method is slow and sensitive: the burn-in and sampling period must

be carefully chosen for MCMC to converge, and many iterations are often re-

quired, so the method does not scale to even moderate size data, which limits

its use in practice. Our model matches that of [45], but our EM algorithm runs

substantially faster.

The generalized low rank models (GLRM) framework [91] handles missing

values imputation for mixed data using a low rank model with appropriately

chosen loss functions to ensure proper treatment of each data type. However,

choosing the right loss functions for mixed data is challenging.

A few papers share our motivation: for example, early papers by Rennie and

Srebro [77, 78] proposed a thresholding model to generate ordinals from real

low rank matrices. Monotonic transformations of a latent low rank matrix are

estimated in [36], but the method performs poorly in practice. xPCA [3] posits

that the mixed data are generated by marginally transforming the columns of

the sum of a low rank matrix and isotropic Gaussian noise. While their marginal

transformation coincides with the Gaussian copula model, their setup greatly

differs in that it cannot identify the correlations between variables.

While low rank matrix completion methods scale well to large datasets, the

11

low rank assumption is too weak to generalize well on long skinny datasets.

Hence low rank methods tend to work well on “square-ish” datasets (n ∼ p) [90],

while the copula methods proposed here work better on long, skinny datasets.

2.2 Gaussian Copula model

The Gaussian copula models complex multivariate distributions through trans-

formations of a latent Gaussian vector. We call a random variable x ∈ R contin-

uous when it is supported on an interval. We can match the marginals of any

continuous random vector x by applying a strictly monotone function to a ran-

dom vector z with standard normal marginals. Further, the required function is

unique, as stated in Lemma 1.

Lemma 1. Suppose x ∈ Rp is a continuous random vector with CDF F j for

each coordinate j ∈ [p], and z ∈ Rp is a random vector with standard normal

marginals. Then there exists a unique elementwise strictly monotone function

f(z) := (f1(z1), . . . , fp(zp)) such that

x j = f j(z j) and f j = F−1
j ◦ Φ, j ∈ [p], (2.1)

where Φ is the standard normal CDF.

Notice the functions { f j}
p
j=1 in Eq. (2.1) are strictly monotone, so their inverses

exist. Define f−1 = (f −1
1 , . . . , f −1

p). Then z = f−1(x) has standard normal marginals,

but the joint distribution of z is not uniquely determined. The Gaussian copula

model (or equivalently nonparanormal distribution [60]) further assumes z is

jointly normal: f(z) = x and z ∼ Np(0,Σ) for a correlation matrix Σ.

12

This model is semiparametric: it comprises nonparametric functions f (de-

noted as the marginals) and parametric copula correlation matrix Σ. The mono-

tone f establishes the mapping between observed x and latent normal z, while

Σ fully specifies the distribution of z. Further, the correlation Σ is invariant

to elementwise strictly monotone transformation of x. Concretely, if x follows

the Gaussian copula with correlation Σ and y = g(x) with elementwise strictly

monotone g , then y also follows the Gaussian copula with correlation Σ, al-

though with a different marginal g ◦ f. Thus the Gaussian copula separates the

multivariate interaction Σ from the marginal distribution.

Modeling ordinal and truncated variables

When f j is strictly monotone, x j = f j(z j) must be continuous. On the other hand,

when f j is monotone but not strictly monotone, x j takes discrete values in the

range of f j and can model ordinals. Thus for ordinals, f j will not be invertible.

For convenience, we define a set-valued inverse f −1
j (x j) := {z j : f j(z j) = x j}. When

the ordinal x j has range [k], Lemma 2 states that the only monotone function f j

mapping continuous z j to x j is a cutoff function, defined for some parameter

S ⊂ R as

cutoff(z; S) := 1 +
∑
s∈S

1(z > s) for z ∈ R.

Lemma 2. Suppose x ∈ R is an ordinal random variable with range [k] and

probability mass function {pl}
k
l=1 and z ∈ R is a continuous random variable with

CDF Fz. Then f = cutoff(z; S) is the unique monotone function f that satisfies

x = f (z), where S = {sl = F−1
z

(∑l
t=1 pt

)
: l ∈ [k − 1]}.

For example, in recommendation system we can think of the discrete ratings

13

as obtained by rounding some ideal real valued score matrix. The rounding

procedure amounts to apply a cutoff function. See Figure 2.2 for an example of

cutoff function.

−∞ −1 0 1 −∞

1

2

3

normal z value

or
di

na
lx

va
lu

e

Figure 2.2: Cutoff function f (·) with cutoffs {−1, 1}maps continuous z to ordinal
x ∈ {1, 2, 3}.

We can even find a unique f j for every one-sided or two-sided truncated

variable. A variable x j truncated below at x = α has a CDF:

F(x) = P(x = α)1(x ≥ α) + (1 − P(x = α))F̃(x),

where F̃(x) is the CDF of a random variable satisfying F̃(α) = 0. An upper

truncated variable and two sided truncated variable are defined similarly. The

CDF of a truncated variables is a strictly monotonic function with a step either

on the left (lower truncated) or the right (upper truncated) or both (two sided

truncated).

The expression of f j as well as their set inverse are summarized in Table 2.1.

In short, f j explains how the data is generated, while f −1
j denotes available in-

formation for model inference given the observed data.

14

Type
Continuous Distribution x has CDF F(x).

f (z) F−1(Φ(z))
f −1(x) Φ−1(F(x))

Ordinal Distribution x has PMF P(x = i) = pi, for i = 1, ..., k.
f (z) max

{
i :

∑i−1
l=0 pl ≤ Φ(z) <

∑i
l=0 pl

}
, with p0 = 0

f −1(x)
{
z :

∑x−1
l=0 pl ≤ Φ(z) <

∑x
l=0 pl

}
, with p0 = 0

Truncated Distribution P(x = α) = pα, P(x = β) = pβ, and CDF F̃(x)
to x ∈ (α, β) conditional on x ∈ (α, β), which satisfies

F̃(α) = 0 and F̃(β) = 1.

f (z)

α, Φ(z) ≤ pα
F̃−1

(
Φ(z)−pα
1−pα−pβ

)
, Φ(z) ∈ (pα, 1 − pβ)

β, Φ(z) ≥ 1 − pβ

f −1(x)

{z : Φ(z) ≤ pα}, x = α
Φ−1

(
pα + (1 − pα − pβ)F̃(x)

)
, x ∈ (α, β)

{z : Φ(z) ≥ 1 − pβ}, x = β

Table 2.1: For any random variable x admitting a total order, there exists a
unique monotonic transformation f such that f (z) = x for a random standard
Gaussian z. For each data type of x, this table includes its distribution spec-
ification, the marginal f , and the set inverse f −1(x) = {z : f (z) = x} of the
marginal. Three different types of truncated variables are summarized together:
(1) α = −∞ and pα = 0 corresponds to lower truncated x; (2) β = ∞ and pβ = 0
corresponds to upper truncated x; (3) finite α, β and positive pα, pβ corresponds
to two sided truncated x. Φ(·) denotes the CDF of a standard normal variable.

Gaussian copula model for mixed data

To extend the Gaussian copula to mixed data, we simply specify a f j correspond-

ing to a desired distribution of x j, as in Table 2.1. As before, the correlation Σ

remains invariant to elementwise strictly monotone transformations. The main

difference is that while f −1
j (x j) is a single number when x j is continuous, it is

an interval when x j is ordinal. Now we summarize the definition of Gaussian

copula for general mixed data. The only requirement for the data x is that each

marginal x j admits a total order: for any two realized values of x j, x1
j and x2

j ,

either x1
j > x2

j or x1
j ≤ x2

j .

Definition 1. We say a random vector x ∈ Rp follows the Gaussian copula x ∼

15

TRANSFORMATION

Figure 2.3: Three monotoic transformations of a Gaussian variable. The third
column depicts the transformations that map the data distribution, visualized
as both PDF (histogram approximation) and CDF (analytical form), in the left
two columns to the data distribution in the right two columns.

GC(Σ, f) with parameters Σ and f if (1) each marginal of x admits a total order;

(2) there exists a correlation matrix Σ and elementwise monotone function f :

Rp → Rp such that f(z) = x for z ∼ Np(0,Σ).

Fig. 2.3 depicts how a Gaussian variable is transformed into an exponential

variable, a lower truncated variable, and an ordinal variable. Fig. 2.4 depicts the

dependency structure induced by a Gaussian copula model: it plots randomly

drawn samples from 2D Gaussian copula model with the same marginal distri-

butions from Fig. 2.3. It shows that the Gaussian copula model is much more

expressive than the multivariate normal distribution. Fig. 2.5 also shows the

correspondence between the observed variables x and the latent normal vari-

ables z.

16

2 0 2

2

0

2

Ga
us

sia
n

va
r x

1

Gaussian var x2

0 1

2

0

2

Exponential var x2

0 2

2

0

2

Lower truncated var x2

0 1 2

2

0

2

Ordinal var x2

0 1
0.0

0.5

1.0

1.5

Ex
po

ne
nt

ia
l v

ar
 x

1

0 2
0.0

0.5

1.0

1.5

0 1 2
0.0

0.5

1.0

1.5

0 2
1

0

1

2

Lo
we

r t
ru

nc
at

ed
 v

ar
 x

1

0 1 2

1

0

1

2

0 1 2
0

1

2

Or
di

na
l v

ar
 x

1

Figure 2.4: Scatterplot of samples from several 2D Gaussian copula models
with different marginals. The data is generated by sampling (z1, z2) from a 2D
Gaussian distribution with zero mean, unit variance and .65 correlation and
computing x1 = f1(z1) and x2 = f2(z2), where f1 and f2 denote the transformations
corresponding to the marginals for each model. For Gaussian marginals (1st
row and 1st column), the transformation is the identity. For other marginals,
the corresponding transformations are plotted as the third column of Fig. 2.3.

17

2.3 Imputation

So far we have introduced a very flexible model for mixed data. Our interest is

to investigate missing value imputation under this model. Concretely, suppose

the data matrix X has rows x1, . . . , xn i.i.d.
∼ GC(Σ, f) and xi = (xi

Oi
, xi
Mi

) for i ∈ [n]. we

first estimate Σ̂ and f̂ using observation {xi
Oi
}ni=1 and then impute missing values

{xi
Mi
}ni=1 using Σ̂, f̂ and observation {xi

Oi
}ni=1. In this section we first show how to

impute the missing values with given estimates f̂ and Σ̂. The estimation for f

and Σ appear in Section 2.4.

For the latent normal vector zi satisfying xi = f(zi), zi follows truncated nor-

mal distribution. In an observed continuous dimension j, zi
j reduces to the point

f −1
j (xi

j). In an observed ordinal dimension j, zi
j lies in the interval f −1

j (xi
j). In an

observed truncated dimension j, zi
j reduces to the point f −1

j (xi
j) if xi

j is not the

truncated value, otherwise is a truncated normal in the interval f −1
j (xi

j). Thus

the constrained region f−1
Oi

(xi
Oi

) is a Cartesian product of intervals (including triv-

ial single point intervals for continuous dimensions). There is no constraint in

missing dimensionMi. It is natural to impute xi
Mi

by mapping the conditional

mean of zi
Mi

through the marginals fMi , summarized in Definition 2 and Algo-

rithm 1, visualized in Fig. 2.5.

Definition 2 (GC Imputation). Suppose x ∼ GC(Σ, f) with observations xO and

missing entries xM. We impute the missing entries as:

x̂M = fM(E[zM|xO]) = fM(ΣM,OΣ
−1
O,OE[zO|xO]), (2.2)

where E[zO|xO] is the expectation of a normal vector zO ∼ N(0,ΣO,O) truncated

into the region {zO : fO(zO) = xO} or f−1
O

(xO) for short. The evaluation of E[zM|xO]

18

is derived in Eq. (2.8).

Algorithm 1 Single imputation via Gaussian Copula

Input: observation {xi
Oi
}ni=1, parameters estimate f̂−1 and Σ̂. For i = 1, . . . , n,

• Compute the constraint zi
Oi
∈ f̂−1
Oi

(xi
Oi

).

• Impute ẑi
Mi
= E[zi

Mi
|zi
Oi
∈ f̂−1
Oi

(xi
Oi

), Σ̂].

• Impute x̂i
Mi
= f̂Mi(ẑi

Mi
).

Output: x̂i
Mi

for i ∈ [n].

While most applications require just a single imputation, multiple imputa-

tions are useful to describe the uncertainty due to imputation. Our method also

supports multiple imputation: in step (2) of Algorithm 1, replace the conditional

mean imputation with conditional sampling and then impute x̂i
Mi

for each sam-

ple. The conditional sampling consists of two steps: (1) sample the truncated

normal zi
Oi

conditional on xi
Oi

and Σ̂; (2) sample the normal zi
Mi

conditional on

zi
Oi

and Σ̂. Efficient sampling methods have been proposed [72] for multivariate

truncated normal distribution.

Algorithm 2 Multiple imputation via Gaussian Copula

Input: # of imputations m, observation {xi
Oi
}ni=1, parameters estimate f̂−1 and Σ̂.

For i = 1, . . . , n,

• Compute the constraint zi
Oi
∈ f̂−1
Oi

(xi
Oi

).

• Sample ẑi,s
Oi

i.i.d.
∼ N(0, Σ̂Oi,Oi) truncated to f−1

Oi
(xi
Oi

) for s = 1, ...,m.

• Sample ẑi,s
Mi

i.i.d.
∼ zi

Mi
|ẑi,s
Oi
, Σ̂ for s = 1, ...,m.

• Compute x̂i,s
Mi
= f̂Mi(ẑ

i,s
Mi

) for s = 1, ..,m.

Output: {x̂i,s
Mi
|s ∈ [m]} for i ∈ [n].

19

?

??

? ?

??

??

? ?

?

?

? ?

?

?

? ?

?

x

x

+
x

x

+ use Σ
x

x

x

x

Figure 2.5: Gaussian copula imputation for a 5-dim partially observed mixed
vector. Curves indicate the marginal probability density functions (for contin-
uous) or probability mass function (for ordinal). First, compute the set of the
latent normal vector which maps to the observation (x1, x3 and x4) through f−1.
Second, compute the conditional mean of the latent normal vector at missing
locations (ẑ2 and ẑ5) given the copula correlation Σ and that z1, z3 and z4 only
take values from the computed inverse set. Lastly, map the conditional mean
through f to obtain the imputations x̂2 and x̂5.

2.4 Parameter estimation

The model fitting algorithm has two steps. We first provide algorithms to esti-

mate the marginal transformation function f. Then we proceed to estaimte the

copula correlation matrix Σwith a marginal estiamte fixed.

2.4.1 Marginal transformation estimation

To map between x and z, we require both f−1 and f. It is easier to directly estimate

f−1. For j ∈ C, we have f −1
j = Φ

−1 ◦ F j, as shown in Eq. (2.1). While the true CDF

F j is usually unavailable, it is natural to estimate it by the empirical CDF of X j

20

on the observed entries, denoted as F̂ j. We use the following estimator:

f̂ −1
j (xi

j) = Φ
−1

(n
n + 1

F̂ j(xi
j)
)
. (2.3)

The scale constant n/(n + 1) ensures the output is finite. MCAR assumption

guarantees the observed entries of X j are from the distribution of F j. Consider

a case when MCAR is violated: an entry is observed if and only if it is smaller

than a constant c, then the observed entries are actually from the distribution

F̃ j:

F̃ j(x j) =

F j(x j)/F j(c), when x ≤ c

1, when x > c
.

Thus we assume MCAR in this section. This assumption may be relaxed to

MAR or even missing not at random by carefully modeling F j or the missing

mechanism. We leave that to our future work. Lemma 3 shows this estimator

converges to f −1
j in sup norm on the observed domain.

Lemma 3. Suppose the continuous random variable x ∈ R with CDF Fx and

normal random variable z ∈ R satisfy f (z)=x for a strictly monotone f . Given

x1, . . . , xn i.i.d.
∼ Fx, m = min

i
xi, and M = max

i
xi, the inverse f̂ −1 defined in Eq. (2.3)

satisfies

P
(

sup
m≤x≤M

| f̂ −1(x) − f −1(x)| > ϵ
)
≤ 2e−c1nϵ2

,

for any ϵ in a1n−1 < ϵ < b1, where a1, b1, c1 > 0 are constants depending on Fx(m)

and Fx(M).

For an ordinal variable j with k levels, f j(z j) = cutoff(z j; S j). Since S j is deter-

mined by the probability mass function {p j
l } of x j, we may estimate cutoffs Ŝ j as

21

a special case of Eq. (2.3) by replacing p j
l with its sample mean:

S j =

Φ−1

∑n j

i=1 1(xi
j ≤ l)

n j + 1

 , l ∈ [k − 1]

 . (2.4)

Lemma 4 shows that Ŝ j consistently estimates S j.

Lemma 4. Suppose the ordinal random variable x ∈ [k] with probability mass

function {pl}
k
l=1 and normal random variable z ∈ R satisfy f (z) = cutoff(z; S)=x.

Given samples x1, · · · , xn i.i.d.
∼ {pl}

k
l=1, the cutoff estimate Ŝ from Eq. (2.4) satisfies

P
(
||Ŝ − S||1 > ϵ

)
≤ 2ke−c2nϵ2/(k−1)2

,

for any ϵ in (k−1)a2n−1 < ϵ < (k−1)b2, where a2, b2, c2 > 0 are constants depending

on {p1, pk}.

For a truncated variable j, note f j (see Table 2.1) is a strictly monotonic func-

tion with a step either on the left (lower truncated) or the right (upper trun-

cated) or both (two sided truncated). Thus estimation of f −1
j is a combination of

Eq. (2.3) and Eq. (2.4).

2.4.2 Copula correlation estimation

We first consider maximum likelihood estimation (MLE) for Σ with complete

continuous observation, then generalize the estimation method to incomplete

mixed observation.

For a truncated variable x j, if a data point xi
j is not the truncated value, then

22

zi
j reduces to a point and it can be viewed as a continuous observation. If a data

point xi
j is the truncated value, then zi

j is truncated normal and it can be viewed

as an ordinal observation. Thus without loss of generality, we assume there are

only ordinal variables and continuous variables. We use C,D ⊂ [p] to denote the

observed continuous and observed ordinal (discrete) dimensions, respectively.

The observed dimensions are O = C ∪D, so x = (xC, xD, xM) = (xO, xM).

Complete continuous observations

We begin by considering continuous, fully observed data. The density of the

observed variable x is

p(x;Σ, f) dx = ϕ(z;Σ)dz,

where z = f−1(x), dz =
∣∣∣ ∂z
∂x

∣∣∣ dx, ϕ(·;Σ) is the PDF of the normal vector with mean 0

and covariance Σ. The MLE of Σmaximizes the likelihood function defined as:

ℓ(Σ; xi) =
1
n

n∑
i=1

log ϕ(f−1(xi);Σ) = c −
1
2

log detΣ −
1
2

Tr

Σ−1 1
n

n∑
i=1

zi(zi)⊤
 , (2.5)

over Σ ∈ E, where zi = f−1(xi) and c is a universal constant (We omit here and

later the constant arising from
∣∣∣ ∂z
∂x

∣∣∣ after the log transformation). Thus the MLE

of Σ is the sample covariance of Z := f(X) = [f1(X1), . . . , fp(Xp)]. When we substi-

tute f by its empirical estimation in Eq. (2.3), the resulting covariance matrix Σ̃

of Ẑ := f̂(X) is still consistent and asymptotically normal under some regularity

conditions [87], which justifies the use of our estimator f̂. To simplify notation,

we assume f is known below.

For a Gaussian copula, notice Σ is a correlation matrix, thus we update Σ̂ =

23

PEΣ̃, where PE scales its argument to output a correlation matrix. The obtained

Σ̂ is still consistent and asymptotically normal.

Incomplete mixed observations

When some columns are ordinal and some data is missing, the Gaussian latent

vector zi is no longer fully observed. We can compute the entries of zi corre-

sponding to continuous data: zi
Ci
= f−1

Ci
(xi
Ci

). However, for ordinal data, f−1
Di

(xi
Di

)

is a Cartesian product of intervals; we only know that zi
Di
∈ f−1
Di

(xi
Di

). The entries

corresponding to missing observations, zi
Mi

, are entirely unconstrained. Hence

the latent matrix Ẑ is only incompletely observed, and it is no longer possibly

to simply compute its covariance.

We propose an expectation maximization (EM) algorithm to estimate Σ for

incomplete mixed observation. Proceeding in an iterative fashion, we replace

unknown zi(zi)⊤ with their expectation conditional on observations xi
Oi

and an

estimate Σ̂ in the E-step, then in the M-step we update the estimate of Σ as the

conditional expectation of covaraince matrix:

G(Σ̂, xi
Oi

) =
1
n

n∑
i=1

E[zi(zi)⊤|xi
Oi
, Σ̂]. (2.6)

Similar to the case of complete continuous data, we further scale the estimate

to a correlation matrix. We first present the EM algorithm in Algorithm 3, then

provide precise statements in Section 2.4.2. Computation details of Algorithm 3

appear in Section 2.4.2 and Section 2.4.3.

24

Algorithm 3 EM algorithm for Gaussian Copula

Input: observed entries {xi
Oi
}ni=1.

Initialize: t = 0, Σ(0).
For t = 0, 1, 2, . . .

1. E-step: Compute G(t) = G(Σ(t), xi
Oi

).

2. M-step: Σ(t+1) = G(t).

3. Scale to correlation matrix: Σ(t+1) = PE(Σ(t+1))

until convergence.
Output: Σ̂ = Σ(t).

EM algorithm

We first write down the marginal density of observed values by integrating out

the missing data. Since xi ∼ GC(Σ, f), there exist latent zi satisfying f(zi) = xi and

zi ∼ Np(0,Σ). The likelihood of Σ given observation xi
Oi

is the integral over the

latent Gaussian vector zi
Oi

that maps to xi
Oi

under the marginal fOi . Hence the

observed log likelihood we seek to maximize is:

ℓobs(Σ; xi
Oi

) =
1
n

n∑
i=1

∫
zi
Oi
∈f−1
Oi

(xi
Oi

)
ϕ(zi

Oi
; 0,ΣOi,Oi) dzi

Oi
, (2.7)

where ΣOi,Oi denote the submatrix of Σ with rows and columns in Oi. With

known f, MAR mechanism guarantees the maximizer of the likelihood in Eq.

(7.8) shares the consistency and asymptotic normality of standard maximum

likelihood estimate, according to the classical theory [59, Chapter 6.2].

However, the maximizer has no closed form expression. Even direct evalua-

tion of ℓobs(Σ; xi
Oi

) is challenging since it involves multivariate Gaussian integrals

in a truncated region and the observed locations Oi varies for different observa-

tions i. Instead, the proposed EM algorithm is guaranteed to monotonically

25

converge to a local maximizer according to classical EM theory [66, Chapter 3].

Now we derive the proposed EM algorithm in detail. Suppose we know the

values of the unobserved zi. Then the joint likelihood function is the same as

in Eq. (2.5). Since the values of zi are unknown, we treat zi as latent variables

and xi
Oi

as observed variables. Substituting the joint likelihood function by its

expected value given observations xi
O

and an estimate Σ̂:

Q(Σ; Σ̂, xi
Oi

) :=
1
n

n∑
i=1

E[ℓ(Σ; xi
Oi
, zi)|xi

Oi
, Σ̂] = c −

1
2

(
log det(Σ) + Tr

(
Σ−1G(Σ̂, xi

Oi
)
))
.

EM theory [66, Chapter 3] guarantees the updated Σ̃ = argmaxΣ∈E Q(Σ; Σ̂, xi
Oi

)

improves the likelihood with Σ̂: ℓobs(Σ̃; xi
Oi

) ≥ ℓobs(Σ̂; xi
Oi

), and that by iterating

this update, we produce a sequence {Σ(t)} that converges monotonically to a lo-

cal maximizer of ℓobs(Σ; xi
Oi

). At the t-th iteration, for the E step we compute

E[zi(zi)⊤|xi
Oi
,Σ(t)] to express Q(Σ;Σ(t), xi

Oi
) in terms of Σ. For the M step, we find

Σ(t+1) = argmaxΣ Q(Σ;Σ(t), xi
Oi

). In practice, we resort to an approximation, as in

[39]. Notice that the unconstrained maximizer is Σ̃ = G(Σ(t), xi
Oi

). We update

Σ(t+1) = PEΣ̃.

Conditional expectation computation

Suppressing index i, we now show how to compute E[zz⊤|xO,Σ] in Eq. (2.4.3).

With zC = f−1
C

(xC), it suffices to compute the following terms:

1. conditional mean and covariance of observed ordinal dimensions

E[zD|xO,Σ],Cov[zD|xO,Σ].

2. conditional mean and covariance of missing dimensions E[zM|xO,Σ],Cov[zM|xO,Σ].

26

3. conditional covariance between missing and observed ordinal dimensions

Cov[zM, zD|xO,Σ].

We show that with the results from (1), we can compute (2) and (3). Computa-

tion for (1) is put in Sec 2.4.3.

Suppose we can know the ordinal values zD and thus zO. Conditional on zO,

the missing dimensions zM follows normal distribution with mean E[zM|zO,Σ] =

ΣM,OΣ
−1
O,O

zO. Further taking expectation of zO conditional on observation, we ob-

tain

E[zM|xO,Σ] = E
[
E[zM|zO,Σ]

∣∣∣xO,Σ] = ΣM,OΣ
−1
O,OE [zO|xO,Σ] . (2.8)

One can compute Cov[zM|xO,Σ] and Cov[zM, zD|xO,Σ] similarly: deferring de-

tails to the appendix, we find

Cov[zM, zO|xO,Σ] = ΣM,OΣ
−1
O,OCov[zO|xO,Σ],

Cov[zM|xO,Σ] = ΣM,M − ΣM,OΣ
−1
O,OΣO,M + ΣM,OΣ

−1
O,OCov[zO|xO,Σ]Σ−1

O,OΣO,M. (2.9)

where Cov[zO|xO,Σ] has Cov[zD|xO,Σ] as its submatrix and 0 elsewhere,

Cov[zM, zO|xO,Σ] has Cov[zM, zD|xO,Σ] as its submatrix and 0 elsewhere.

2.4.3 Approximating truncated normal mean and covariance

Now it remains to compute E[zD|xO,Σ] and Cov[zD|xO,Σ], which are the mean

and covariance of a |D|-dimensional normal truncated to f−1
D

(xD), a Cartesian

27

product of intervals. The computation involves multiple integrals of a nonlin-

ear function and only admits a closed form expression when |D| = 1. Direct

computational methods [9] are very expensive and can be inaccurate even for

moderate |D|. Notice the computation needs to be done for each row xi
Oi

at each

EM iteration separately, thus sampling truncated normal distribution to evalu-

ate the empirical moments [72] is still expensive for large number of data points

n. Instead, we use a fast iterative method that scales well to large datasets, fol-

lowing [39].

Suppose all but one element of zD is known. Then we can easily compute the

resulting one dimensional truncated normal mean: for j ∈ D, if z j is unknown

and zD− j is known, let E[z j|zD− j, xO,Σ] =: f j(zD− j; x j,Σ) define the nonlinear func-

tion f j : R|D|−1 → R, parameterized by x j and Σ, detailed in the appendix. We

may also use f j to estimate E[z j|xO,Σ] if E[zD− j|xO,Σ] is known:

E[z j|xO,Σ] = E[E[z j|zD− j, xO,Σ]|xO,Σ]

=E[f j(zD− j; x j,Σ)|xO,Σ] ≈ f j(E[zD− j|xO,Σ]; x j,Σ), (2.10)

if f j is approximately linear. In other words, we can iteratively update the

marginal mean of E[zD|xO,Σ]. At EM iteration t + 1, we conduct one iteration

update with initial value from last EM iteration ẑ(t)
D
≈ E[zD|xO,Σ(t)]:

E[z j|xO,Σ(t+1)] ≈ ẑ(t+1)
j := f j(ẑ(t)

D− j; x j,Σ
(t+1)). (2.11)

Surprisingly, one iteration update works well and more iterations do not bring

significant improvement.

28

We use a diagonal approximation for Cov [zD|xO,Σ]: we approximate

Cov
[
z j, zk|xO,Σ

]
as 0 for j , k ∈ D. This approximation performs well when

z j and zk are nearly independent given all observed information. We approxi-

mate the diagonal entries Var
[
z j|xO,Σ(t+1)

]
for j ∈ D using a recursion similar to

Eq. (2.11), detailed in the appendix.

We point out the estimated covariance matrix in Eq. (2.4.3) is the sum of the

sample covariance matrix of the imputed zi using its conditional mean and the

expected covariance brought by the imputation. The diagonal approximation

only applies to the second term, while the first term is dense. Consequently, the

estimator in Eq. (2.4.3) is dense and can fit a large range of covariance matri-

ces. Our experiments indicates that our approximation even outperforms the

MCMC algorithm without such diagonal approximation [45].

Computation Cost The complexity of each EM iteration is O(αnp3) with ob-

served entry ratio α. The overall complexity is O(Tαnp3), where T is the number

of EM steps required for convergence. We found T ≤ 50 in most of our experi-

ments. On a laptop with Intel-i5-3.1GHz Core and 8 GB RAM, it takes 1.2min for

our algorithm to converge on a dataset with size 2000 × 60 and 25% missing en-

tries (generated as in Section 2.5.1 when p = 60). Scaling our algorithm to large

p is important future work. However, our algorithm is usually faster than many

start-of-the-art imputation algorithms for large n small p. Speed comparison on

a dataset with size 6039 × 207 is shown in Section 2.5.3.

Parallelization Noting the computation of expectation in is separable over the

rows, we have developed a parallel algorithm to accelerate the EM algorithms.

29

2.5 Experiments

Our first experiment demonstrates that our method, Copula-EM, is able to es-

timate a well-specified Gaussian copula model faster than the MCMC method

sbgcop [45, 44]. Our other experiments compare the accuracy of imputations

produced by Copula-EM with missForest [84], xPCA [3] and imputeFAMD

[4], state-of-the-art nonparametric imputation algorithms for mixed data; and

the low rank matrix completion algorithms softImpute [64] and GLRM [91],

which scale to large datasets. missForest is implemented with recommended

default settings: 10 maximum iterations and 100 trees [83]. All other methods

require selecting either the rank or the penalization parameter. We select them

through 5-fold cross validation (5CV), unless otherwise specified. See the ap-

pendix for implementation details. For real datasets, we report results from our

Copula-EM but put that from sbgcop in the appendix, since Copula-EM out-

performs on all evaluation metrics and converges substantially faster.

2.5.1 Synthetic data

The first experiment compares the speed of the two algorithms to estimate

Gaussian copula models: Copula-EM and sbgcop. Note Copula-EM is im-

plemented in pure R, while the computational core of sbgcop is implemented

in C. Hence further acceleration of Copula-EM is possible.

We generate 100 synthetic datasets with n = 2000 observations and p = 15

variables from a well-specified Gaussian copula model with random Σ gener-

ated [73]. For each Σ, first generate rows of Z ∈ Rn×p as z1, · · · , zn i.i.d.
∼ N(0,Σ).

30

Then generate X = f(Z) using monotone f such that X1, . . . ,X5 have exponential

distributions, X6, . . . ,X10 are binary and X11, . . . ,X15 are 1-5 ordinal.

We randomly remove 30% of the entries of X, train Copula-EM and sbgcop,

and compute the imputation error on the held-out set. We plot the imputa-

tion accuracy and correlation estimation accuracy versus runtime of each algo-

rithm in Figure 2.6. Copula-EM converges quickly, in about 25s, while sbgcop

takes much longer and suffers high error at shorter times. Copula-EM esti-

mates correlations and continuous imputations at convergence more accurately

than sbgcop even when the latter algorithm is given 6 times more runtime.

Interestingly, Copula-EM recovers the correlation matrix better than sbgcop

even asymptotically. These results demonstrate the impact of the approximate

EM algorithm 2.4.3 compared to the (fully accurate) MCMC model of sbgcop:

the approximation allows faster convergence, to an estimate of nearly the same

quality.

For ordinal data imputation, Copula-EM reaches the same performance as

sbgcop 6 times faster. For binary data imputation, sbgcop is four times slower

than Copula-EM at reaching the final performance of Copula-EM, but sbgcop

outperforms Copula-EM given even more time. We conjecture that the drop in

imputation accuracy of Copula-EM for binary data could be mitigated using

multiple imputation [59, Chapter 5.4], as outlined in Section 2.3 by combining

the imputations (using mean or median) into a single imputation to reduce the

effect of approximating the truncated normal distribution.

The second experiment compares the imputation accuracy of Copula-EM

and nonparametric algorithms. Using the same data generation mechanism, we

randomly remove 10%−50% of the entries of X. The optimal rank selected using

31

0.76

0.80

0.84

0.88

0 50 100 150
time (s)

S
M

A
E

Continuous

0.8

0.9

1.0

1.1

1.2

0 50 100 150
time (s)

S
M

A
E

Ordinal

0.7

0.8

0.9

0 50 100 150
time (s)

S
M

A
E

Binary

0.25

0.50

0.75

1.00

0 50 100 150
time (s)

R
el

at
iv

e
E

rr
or

Correlation

method Copula−EM sbgcop

Figure 2.6: Copula-EM vs sbgcop: The imputation error for each data type and
estimated correlation error over time cost. Dashed line indicates the final error
of Copula-EM.

5CV is 3 for xPCA and 6 for imputeFAMD. Shown in Figure 2.7,Copula-EM

substantially outperforms all nonparametric algorithms for all data types.

2.5.2 General Social Survey (GSS) data

We chose 18 variables with 2538 observations from GSS dataset in year 2014.

24.9% of the entries are missing. The dataset consists of 1 continuous (AGE) and

17 ordinal variables with 2 to 48 levels. We investigate the imputation accuracy

32

0.8

1.0

1.2

10% 20% 30% 40% 50%
missing ratio

S
M

A
E

Continuous

0.8

1.0

1.2

10% 20% 30% 40% 50%
missing ratio

Ordinal

0.6

0.7

0.8

0.9

1.0

1.1

10% 20% 30% 40% 50%
missing ratio

Binary

method Copula−EM missForest xPCA imputeFAMD

Figure 2.7: Copula-EM vs nonparametric algorithms: The imputation error for
each data type on synthetic data.

Table 2.2: Imputation Error on Five GSS Variables

Variable Copula-EM missForest xPCA imputeFAMD
CLASS 0.735(0.10) 0.782(0.09) 0.795(0.08) 0.797(0.10)

LIFE 0.759(0.12) 0.828(0.17) 0.783(0.11) 0.821(0.11)
HEALTH 0.877(0.09) 1.143(0.18) 0.908(0.10) 0.947(0.04)
HAPPY 0.896(0.08) 1.079(0.15) 1.003(0.15) 1.001(0.10)

INCOME 0.869(0.07) 0.944(0.18) 1.090(0.15) 0.996(0.01)

on five selected variables: INCOME, LIFE, HEALTH, CLASS1 and HAPPY. For

each variable, we sample 1500 observation and divide them into 20 folds. We

mask one fold of only one variable as test data in each experiment. The selected

rank is 2 for both xPCA and imputeFAMD. We report the SMAE for each vari-

able in Table 2.2. Our method performs the best for all variables. Further our

method always performs better than median imputation. In contrast, the other

three methods perform worse than median imputation for some variables. Our

method also provides estimated variable correlation, which is usually desired

in social survey study. We plot high correlations from the copula correlation

matrix as a graph in Figure 2.8.

1Subjective class identification from lower to upper class

33

Figure 2.8: High Correlations (| · | > 0.3) of 5 interesting variables from GSS data
are plotted.

2.5.3 MovieLens 1M data

Recall our method scales cubicly in the number of variables. Hence for this ex-

periment, we sample the subset of the MovieLens 1M data [41] consisting of the

207 movies with at least 1000 ratings and all users who rate at least one of those

207 movies. On this subset, 75.6% of entries are missing. Under the time limit 1

hour, we implement all algorithms but imputeFAMD. Copula-EM takes 9 mins

and missForest takes 25 mins. These two methods have no parameters to

tune. To select tuning parameters for other algorithms, we manually mask 10%

of the data for the test set and use the remaining data to train the model, and

repeat 20 times. The selected rank using 5CV is 99 for softImpute, 6 for xPCA,

and 8 for GLRM with bigger-vs-smaller loss. With the selected tuning parame-

ter, low rank matrix completion methods are substantially faster. For example,

softImpute only takes 33s. However, counting the additional time to select

tuning parameters using 5CV, softImpute takes 16mins to select the penaliza-

34

Table 2.3: Imputation Error on 207 Movies

Algorithm MAE RMSE
Column Median 0.702(0.004) 1.001(0.004)
Copula-EM 0.579(0.004) 0.880(0.005)
GLRM 0.595(0.004) 0.892(0.004)
softImpute 0.602(0.004) 0.883(0.004)
xPCA 0.613(0.004) 0.897(0.004)
missForest 0.669(0.004) 1.015(0.006)

tion parameter with regularization path length 50, which is already more expen-

sive than Copula-EM. Interestingly, the ranks selected are quite different even

when the models perform similarly: GLRM chooses rank 8 while softImpute

chooses rank 99.

We report both mean absolute error (MAE) and RMSE in Table 2.3. Our

method outperforms all others in both MAE and RMSE. This result is no-

table, because Copula-EM does not directly minimize MAE or RMSE, while

softImpute directly minimizes RMSE. It also indicates Copula-EM does not

overfit even with O(p2) free parameters.

2.5.4 Music Auto-tagging: CAL500exp data

The CAL500 expansion (CAL500exp) dataset [96] is an enriched version of the

well-known CAL500 dataset [88]. This dataset consists of 67 binary tags (includ-

ing genre, mood and instrument, labeled by experts) to 3223 music fragments

from 500 songs. Music auto-tagging is a multi-label learning problem. A feature

vector is usually computed first based on the music files and then a classifier is

trained for each tag. This procedure is expensive and neglects the association

among known labels. We treat this task as a missing data imputation problem

and only use observed labels to impute unknown labels. This dataset is com-

35

Table 2.4: Imputation Error (SMAE) on CAL500exp.

Algorithm 40% missing 50% missing 60% missing
Copula-EM 0.799(0.002) 0.822(0.003) 0.849(0.002)
missForest 0.800(0.018) 0.984(0.026) 1.181(0.024)
imputeFAMD 0.823(0.013) 0.920(0.016) 1.114(0.020)
xPCA 0.911(0.018) 0.988(0.071) 1.108(0.145)

Table 2.5: Imputation Error on More Ordinal and Mixed Datasets.

Dataset Size Selected Rank
ESL 488 × 5, 4 features, 1 label 1 (xPCA), 5 (imputeFAMD)
LEV 1000 × 5, 4 features, 1 label 1 (xPCA), 5 (imputeFAMD)
GBSG 686 × 10, 6 continuous, 4 ordinal 2 (xPCA), 2 (imputeFAMD)
TIPS 244 × 7, 2 continuous, 5 ordinal 2 (xPCA), 6 (imputeFAMD)

pletely observed. We randomly remove some portions of the observed labels as

a test set and repeat 20 times. The selected optimal rank is 4 for xPCA and 15

for imputeFAMD. Shown in Table 2.4, Copula-EM performs the best in terms

of SMAE. The superiority of Copula-EM over other algorithms substantially

grows as the missing ratio increases. Moreover, Copula-EM yields very stable

imputations: the standard deviation of its SMAE is imperceptibly small.

2.5.5 More ordinal data and dixed data

We compare mixed data imputation algorithms on two more ordinal classifica-

tion datasets2, Lecturers Evaluation (LEV) and Employee Selection (ESL), and

two more mixed datasets, German Breast Cancer Study Group (GBSG)3 and

Restaurant Tips (TIPS)4. Dataset descriptions appear in Table 2.5, and more de-

tails appear in the appendix. All datasets are completely observed.

2Available at https://waikato.github.io/weka-wiki/datasets/
3Available at https://cran.r-project.org/web/packages/mfp/
4Available at http://ggobi.org/book/

36

Table 2.6: Imputation Error on More Ordinal and Mixed Datasets.

Dataset Type Copula-EM missForest xPCA imputeFAMD
ESL Label 0.372(0.04) 0.553(0.08) 0.404(0.04) 0.503(0.06)

Feature 0.584(0.03) 0.873(0.06) 0.668(0.03) 0.687(0.03)
LEV Label 0.750(0.04) 0.970(0.09) 0.860(0.06) 0.882(0.05)

Feature 0.907(0.01) 0.799(0.03) 1.037(0.02) 1.085(0.04)
GBSG Ordinal 0.793(0.03) 0.887(0.05) 0.876(0.04) 0.840(0.03)

Continuous 0.876(0.01) 1.029(0.03) 1.100(0.04) 1.038(0.03)
TIPS Ordinal 0.786(0.05) 0.928(0.09) 0.928(0.08) 0.891(0.09)

Continuous 0.755(0.04) 0.837(0.05) 1.011(0.11) 0.892(0.13)

For each dataset, we randomly remove 30% entries as a test set and repeat

100 times. For ordinal classification datasets, we evaluate the SMAE for the

label and for the features, respectively. For mixed datasets, we evaluate the

SMAE for ordinal dimensions and for continuous dimensions, respectively. We

report results in Table 2.6. Our method outperforms the others in all but one

setting, often by a substantial margin.

2.6 Discussion

We end by noting a few contrasts between the present approach and typical

low rank approximation methods for data imputation. Low rank approxima-

tion constructs a latent simple (low rank) object and posits that observations

are noisy draws from that simple latent object. In contrast, our approach uses

a parametric, but full-dimensional, model for the latent object; observations are

given by a deterministic function of the latent object. In other words, in previ-

ous work the latent object is exact and the observations are noisy; in our work,

the latent object is noisy and the observations are exact. Which more faithfully

models real data? As evidence, we might consider whether low rank models

agree on the best rank to fit a given dataset. For example, on the MovieLens

37

dataset: (1) The low rank matrix completion methods xPCA and GLRM, imple-

mented using alternating minimization, select small optimal ranks (6 and 8),

while softImpute, implemented using nuclear norm minimization, selects the

much larger optimal rank 99. (2) Our algorithm outperforms all the low rank

matrix completion methods we tested. These observations suggest the low rank

assumption commonly used to fit the MovieLens dataset may not be fundamen-

tal, but may arise as a mathematical artifact [90]. More supporting empirical

results can be found in [6]: the performance of softImpute keeps improving

as the rank increases (up to 103).

38

CHAPTER 3

IMPUTATION VIA LOW RANK GAUSSIAN COPULA

This chapter develops the low rank Gaussian copula model for high dimen-

sional missing data imputation. This chapter is based on [102]. We introduce

our model in Section 3.2, the estimation algorithm in Section 3.3, and analyze

the MSE of our imputation estimator in Section 3.4.

3.1 Introduction

We have demonstrated in Section 2.5 our proposed Gaussian copula imputation

Section 2.3 enjoys state-of-the-art performance on long skinny datasets. How-

ever, the proposed algorithm scales cubically in the number of columns, which

is too expensive for applications to large-scale datasets such as collaborative

filtering and medical informatics.

Our contribution

We propose a low rank Gaussian copula (LRGC) model for imputation with

quantified uncertainty. The proposed model combines the advantages of prob-

abilistic principal component analysis (PPCA) and Gaussian copula: the proba-

bilistic description of missing entries allows for uncertainty quantification; the

low rank structure allows for efficient estimation from large-scale data; and the

copula framework provides the generality to accurately fit real-world data. The

imputation proceeds in two steps: first we fit the LRGC model, and then we

39

compute the distribution of the missing values separately for each row, condi-

tional on the observed values in that row. We impute the missing values with

the conditional mean and quantify their uncertainty with the conditional vari-

ance. Our contributions are as follows.

1. We propose a probabilistic imputation method based on the low rank

Gaussian copula model to impute real-valued, ordinal and Boolean data.

The rank of the model is the only tuning parameter.

2. We propose an algorithm to fit the proposed model that scales linearly in

the number of rows and the number of columns. Empirical results show

our imputations provide state-of-the-art accuracy across a wide range of

data types, including those with high rank.

3. We characterize how the mean squared error (MSE) of our imputations

depends on the SNR. In particular, we show the MSE converges exponen-

tially to the noise level in the limit of high SNR.

Inheriting the advantages of the Gaussian copula model, LRGC naturally han-

dles mixed data and has no model hyperparameters except for a rank.

Related work

Although our proposed model has a low rank structure, it greatly differs from

LRMC in that the observations are assumed to be generated from, but not equal

to, a real-valued low rank matrix. Many authors have considered generaliza-

tions of LRMC beyond real-valued low rank observations: to Boolean data [26],

ordinal data [56, 10, 3], mixed data [91, 80], data from an exponential family dis-

40

tribution [38], and high rank matrices [36, 70, 31, 32]. However, none of these

methods can quantify the uncertainty of the resulting imputations.

Researchers from a Bayesian tradition have also studied the LRGC model

with missing data [68, 25]. However, the associated MCMC algorithms are ex-

pensive and do not scale to large-scale data.

3.2 Low rank Gaussian copula model

We propose a low rank Gaussian copula (LRGC) model that integrates the flex-

ible marginals of the Gaussian copula model with the low rank structure of the

PPCA model [86]. To define the model, first consider a p-dimensional Gaussian

vector z ∼ PPCA(W, σ2) generated from the PPCA model:

z =Wt + ϵ, where t ∼ Nk(0, Ik), ϵ ∼ Np(0, σ2Ip), t and ϵ are independent, (3.1)

where W = [w1, . . . ,wp]⊤ ∈ Rp×k with p > k. We say x follows the low rank

Gaussian copula (LRGC) model if x ∼ GC(WW⊤ + σ2Ip, f) and f(z) = x for z ∼

PPCA(W, σ2).

To ensure that x follows the Gaussian copula, z must have zero mean and

unit variance in all dimensions. Hence we require the covariance WW⊤+σ2Ip to

have unit diagonal: ||w j||
2
2 + σ

2 = 1 for j ∈ [p]. We summarize the LRGC model

in the following definition.

Definition 3. We say a random vector x ∈ Rp follows the low rank Gaussian

copula x ∼ LRGC(W, σ2, f) with parameters W ∈ Rp×k(p > k), σ2 and f if (1) f

41

is an elementwise monotonic function; (2) WW⊤ + σ2Ip has unit diagonal; (3)

f(z) = x for z ∼ PPCA(W, σ2).

To see the generality of the LRGC model, suppose X has iid rows xi ∼

LRGC(W, σ2, f). Then

X = f(Z) = f(TW⊤ + E) := [f1(Z1), . . . , fp(Zp)]

= [f1(Tw1 + E1), . . . , fp(Twp + Ep)] (3.2)

where Z,T,E have rows zi, ti, ϵ i, respectively, satisfying zi =Wti+ϵ i and f(zi) = xi

for i ∈ [n]. While the latent normal matrix Z has low rank plus noise structure,

the observation matrix X can have high rank or ordinal entries with an appro-

priate choice of the marginals f. When all marginals of f are linear functions in

R, the LRGC model reduces to the PPCA model.

Our method differs from LRMC and multiple imputation (MI) [51, 67] in that

we treat one factor W as model parameters, but the other factor T as unseen ran-

dom samples. With estimated W, we analytically integrate over all T to obtain

the imputation and quantify uncertainty. In contrast, LRMC and its generaliza-

tion aim to estimate both factors W and T as model parameters, which make

it hard to quantify uncertainty. MI treats both factors W and T as unseen ran-

dom samples, which make the computation, such as the posterior distribution,

intractable and requires expensive sampling on large datasets.

Imputation The imputation under LRGC is a special case of imputation under

general Gaussian copula model in Definition 2 and Algorithm 1. We provide the

specific forms of E[zM|xO] and Cov[zM|xO], as stated in Lemma 5.

42

Lemma 5. Suppose x ∼ LRGC(W, σ2, f) with observations xO and missing en-

tries xM. Then for the latent normal vector z satisfying f(z) = x, with corre-

sponding latent subvectors zO and zM,

E[zM|xO] =WMM−1
O

W⊤
O

E[zO|xO], where MO = σ
2Ik +W⊤

O
WO (3.3)

Cov[zM|xO] = σ2I|M| + σ2WMM−1
O

W⊤
M
+WMM−1

O
W⊤
O

Cov[zO|xO]WOM−1
O

W⊤
M

(3.4)

3.3 Parameter estimation

Suppose X ∈ Rn×p observed onΩ has iid rows xi ∼ LRGC(W, σ2, f) and xi has ob-

servations xi
Oi

and missing entries xi
Mi

. We estimate the marginals f and copula

correlation parameters (W, σ2). The estimation of f is the same as that under the

general Gaussian copula, see Section 2.4.1. To estimate (W, σ2), we propose an

EM algorithm that scales linearly in n and p, using ingredients from [39] for the

E-step, and from [48] for the M-step. We present essentials here and summarize

in Algorithm 4.

3.3.1 EM algorithm for W and σ2

Ideally, we would compute the maximum likelihood estimates (MLE) for the

copula parameters (W, σ2) (under the likelihood in Eq. (3.5)), which are con-

sistent under the MAR mechanism [59, Chapter 6.2] as n −→ ∞. However, the

likelihood involves a Gaussian integral that is hard to optimize. Instead, we

estimate the MLE using an approximate EM algorithm.

43

The likelihood of (W, σ2) given observation xi
Oi

is the integral over the latent

Gaussian vector zi
Oi

that maps to xi
Oi

under the marginal fOi . Hence the observed

log likelihood we seek to maximize is:

ℓobs(W, σ2; {xi
Oi
}ni=1) =

n∑
i=1

log
∫

zi
Oi
∈f−1
Oi

(xi
Oi

)
ϕ(zi

Oi
; 0,WOiW

⊤
Oi
+ σ2I|Oi |)dzi

Oi
, (3.5)

where ϕ(·;µ,Σ) denotes the Gaussian vector density with mean µ and covariance

Σ. Recall the decomposition Z = TW⊤ +E as in Eq. (3.2). If zi
Oi

and ti are known,

the joint likelihood is simple:

ℓ(W, σ2; {xi
Oi
, zi
Oi
, ti}ni=1) =

n∑
i=1

log
[
ϕ(zi

Oi
; WOit

i, σ2Ip) ϕ(ti; 0, Ik)1f−1
Oi

(xi
Oi

)(zi
Oi

)
]
. (3.6)

Here define 1A(x) = 1 when x ∈ A and 0 otherwise. The maximizers (Ŵ, σ̂)

of Eq. (3.6) are Ŵ = argminW ||PΩ(Z − TW⊤)||2F and σ̂2 = ||PΩ(Z − TŴ⊤)||2F/|Ω|.

Moreover, the problem is separable over the rows of Ŵ: to solve for the j-th row

ŵ⊤j , we use only zi
Oi
, ti for i ∈ Ω j = {i : (i, j) ∈ Ω}. Our EM algorithm treats the

unknown zi
Oi
, ti as latent variables and xi

Oi
as the observed variable. Given an

estimate (W̃, σ̃2), the E-step computes the expectation E[||PΩ(Z − TW⊤)||2F] with

respect to zi
Oi

and ti conditional on xi
Oi

. Throughout the section, we use E to

denote this conditional expectation. The M-step is similar to when zi
Oi

and ti are

known.

44

E step Calculate the expected likelihood Q(W, σ2; W̃, σ̃2):

Q(W, σ2; W̃, σ̃2) = E[ℓ(W, σ2; {xi
Oi
, zi
Oi
, ti}ni=1)] = c −

∑n
i=1 |Oi| log(σ2)

2
−∑n

i=1

(
E[(zi

Oi
)⊤zi

Oi
] − 2tr(WOiE[ti(zi

Oi
)⊤]) + tr(W⊤

Oi
WOiE[ti(ti)⊤])

)
2σ2 . (3.7)

where c is an absolute constant in terms the model parameters W and σ2. The

key fact we use to derive Eq. (3.7) is that conditional on known zO, t is normally

distributed:

t|zO ∼ N(M−1
O

W⊤
O

zO, σ2M−1
O

), (3.8)

where MO = σ
2Ik +W⊤

O
WO. This result follows by applying the Bayes formula

with zO|t ∼ N(WOt, σ2Ip), t ∼ N(0, Ik) and zO ∼ N(0,WOW⊤
O
+ σ2Ip). According to

Eq. (3.7), it suffices to compute E[(zi
Oi

)⊤zi
Oi

],E[ti(zi
Oi

)⊤] and E[ti(ti)⊤], presented in

Lemma 6.

Lemma 6. Suppose x ∼ LRGC(W, σ2, f) with observations xO and missing en-

tries xM, with W ∈ Rp×k. Then for the latent normal vector z and latent isotropic

normal vector t satisfying f(z) = x and z = Wt + ϵ, with corresponding latent

subvectors zO and zM,

E[t|xO] =M−1
O

W⊤
O

E[zO|xO], where MO = σ
2Ik +W⊤

O
WO. (3.9)

E[t(zO)⊤|xO] = E[t|xO]E[zO|xO]⊤ +M−1
O

W⊤
O

Cov[zO|xO]. (3.10)

E[tt⊤|xO] = σ2M−1
O
+ E[t|xO]E[t|xO]⊤ +M−1

O
W⊤
O

Cov[zO|xO]WOM−1
O
. (3.11)

Recall that for continuous data, E[zi
Oi
|xi
Oi

] = f−1
Oi

(xi
Oi

) and Cov[zi
Oi
|xi
Oi

] = 0. For

ordinal data, these quantities are the mean and covariance of a truncated nor-

45

mal vector, for each row i separately at each EM iteration. In Section 2.4.3, we

introduced a fast iterative method to estimate those quantity, where we resort to

a diagonal approximation of Cov[zi
Oi
|xi
Oi

]. Note here the diagonal approximation

also reduces the computation for Eq. (3.11)) from O(|O|2k) to O(|O|k2).

M step Let e j ∈ Rp be the jth standard basis vector. Take the derivative of the

Q-function in Eq. (3.7) with respect to row w⊤j and σ2:

∂Q
∂w⊤j

=
−1
|Ω j|σ2

∑
i∈Ω j

(−e⊤j E[zi
Oi

t⊤i] + w⊤j E[tit⊤i]),

∂Q
∂σ2 =

1
2σ4

n∑
i=1

(
E[(zi

Oi
)⊤zi

Oi
] − 2tr(WOiE[ti(zi

Oi
)⊤]) + tr(W⊤

Oi
WOiE[tit⊤i])

)
−

∑n
i=1 |Oi|

2σ2 .

Set both to zero to obtain the update for M-step:

ŵ⊤j =

e⊤j ∑
i∈Ω j

E[zi
Oi

(ti)⊤]

∑

i∈Ω j

E[ti(ti)⊤]

−1

, σ̂2 =

∑n
i=1 E

[
||zi
Oi
− ŴOiti)||22

]∑n
i=1 |Oi|

. (3.12)

The maximizer (Ŵ, σ̂2) increase the observed likelihood in Eq. (3.5) com-

pared to the initial estimate (W̃, σ̃2) [66, Chapter 3]. To satisfy the unit diagonal

constraints ||w j||
2
2+σ

2 = 1, we approximate the constrained maximizer by scaling

the unconstrained maximizer shown in Eq. (3.13) as in [39, 103]:

σ̂2 ← σ̂2
new =

1
p

p∑
j=1

σ̂2

||ŵ j||
2
2 + σ̂

2
, ŵ j ←

ŵ j

||ŵ j||2
·

√
1 − σ̂2

new. (3.13)

We find this approximation works well in practice.

46

Stopping criteria We use the relative change of the parameter W as the stop-

ping criterion. Concretely, with W1 from last iteration and W2 from current

iteration, the algorithm stops if ||W1−W2 ||
2
F

||W1 ||
2
F

is smaller than the tolerance level. We

observe the algorithm converges in no more than 50 iterations in most cases.

Computation cost The computational complexity for each iteration is O(|Ω|k2+

nk3 + pk3), upper bounded by O(npk2). We find the method usually converges in

fewer than 50 iterations across our experiments. See the Movielens 1M experi-

ment in Section 3.5 for a run time comparison with state-of-the-are methods.

Algorithm 4 Imputation via low rank Gaussian copula fitting

Input: X ∈ Rn×p observed on Ω, rank k, tmax.
1: Compute the empirical CDF F̂ j and empirical quantile function F̂−1

j on ob-
served X j, for j ∈ [p].

2: Estimate f̂ j = Φ
−1 ◦ n

n+1 F̂ j and f̂ −1
j = F̂−1

j ◦ Φ, for j ∈ [p].
3: Initialize: W(0), (σ2)(0)

4: for t = 1, 2, . . . , tmax do
5: E-step: compute the required conditional expectation using Eq. (3.9-3.11).

6: M-step: update W(t), (σ2)(t) using Eq. (3.12-3.13).
7: end for
8: Impute x̂i

Mi
using Definition 2 for i ∈ [n] with f = f̂,W =W(tmax), σ2 = (σ2)(tmax).

Output: X̂ with imputed x̂i
j at (i, j) ∈ Ωc and observed xi

j at (i, j) ∈ Ω.

3.4 Imputation error bound

The imputation error consists of two parts: (1) the random variation of the er-

ror under the true LRGC model; (2) the estimation error of the LRGC model.

Analyzing the estimation error (2) is challenging for output from EM algo-

rithm; moreover, in our experiments we find that the imputation error can be

attributed predominantly to (1), detailed in the appendix. Hence we leave (2) to

47

future work. To analyze the random variation of the error under the true LRCG

model, we examine the MSE of x̂ for a random row x ∼ LRGC(W, σ2, f) with

fixed missing locationsM: MSE(x̂) = ||fM(ẑM) − fM(zM)||22/|M|. For continuous x

with strictly monotone f, we must assume that f is Lipschitz to obtain a finite

bound on the error. With this assumption and assuming W, σ2 fixed and known,

we can use the fact that zM|xO is normal to bound large deviations of the MSE.

Theorem 1. Suppose subvector xO of x ∼ LRGC(W, σ2, f) is observed and that all

marginals f are strictly monotone with Lipschitz constant L. Denote the largest

and the smallest singular values of W′ as λ1(W′) and λk(W′). Then for any t > 0,

the imputed values x̂ in Definition 2 satisfy

Pr

MSE(x̂) > L2σ2

√

1 +
1 − σ2

σ2 + λ2
k(WO)

+

√
2
(
1 +

λ2
1(WM)

σ2 + λ2
k(WO)

)
t
|M|

2 ≤ e−t.

Theorem 1 indicates the imputation error concentrates atσ2+
σ2(1−σ2)

σ2+λ2
k (WO)/σ2 with

an expansion multiplier L2 due to the marginals f. The first term σ2 represents

the fraction of variance due to noise and the second term is small when the SNR

is large. We also analyze the distribution of λ2
k(WO)/σ2 under a random design

to provide insight into when the error is small: in Corollary 1, the second term

vanishes with increasing observed length |O|.

Corollary 1. Under the conditions of Theorem 1, further assume W has inde-

pendent sub-Gaussian rows w j with zero mean and covariance 1−σ2

k Ik for j ∈ [p].

Suppose c1k < |O| < c2|M| for some constant c1 > 0 depending on the sub-

Gaussian norm of the scaled rows
√

k
1−σ2 w j and some absolute constant c2 > 0.

48

Then for some constant c3 > 0 depending on c1, c2,

Pr
[
MSE(x̂) > L2σ2 (

1 + K|O|
)]
≤ c3/|O|, where K|O| = O

(√
log(|O|)/|O|

)
. (3.14)

See the appendix for definition of a sub-Gaussian vector. Analyzing the im-

putation error for ordinal x is much harder since zM|xO is no longer Gaussian.

We leave that for future work.

3.5 Experiments

Our experiments evaluate the imputation accuracy of LRGC. For comparison,

we implement LRMC methods softImpute [64], GLRM [91] with ℓ2, ℓ1, bigger

vs smaller (BvS, for ordinal data), hinge, and logistic loss. We also implement

the high rank matrix completion method MMC [36], and PPCA, a special case of

LRGC with Gaussian marginals.

3.5.1 Synthetic experiments

We consider three data types from LRGC: continuous, 1-5 ordinal and binary.

We generate W ∈ Rp×k,T ∈ Rn×k,E ∈ Rn×p with independent standard normal

entries, then scale each row of W such that ||w j||
2
2 + σ

2 = 1. Then generate X =

f(Z) = f(TW⊤ +σE) using f described below. Missing entries of X are uniformly

sampled. We set n = 500 and p = 200. For continuous data, we use f j(z) = z

to generate a low rank X = Z and f j(z) = z3 to generate a high rank X. We set

k = 10, σ2 = 0.1 and the missing ratio as 40%. For 1-5 ordinal data and binary

49

Table 3.1: Imputation error (NRMSE for continuous and MAE for ordinal) re-
ported over 20 repetitions, with rank r for available methods. GLRM methods
are trained at rank 199.

Continuous LRGC PPCA softImpute GLRM-ℓ2 MMC
Low Rank .347(.004), r = 10 .338(.004), r = 10 .371(.004), r = 117 .364(.003) .633(.007), r = 130
High Rank .517(.011), r = 10 .690(.010), r = 10 .703(.005), r = 104 .696(.006) .824(.011), r = 137

1-5 ordinal LRGC PPCA softImpute GLRM-BvS GLRM-ℓ1

High SNR .358(.008), r = 5 .501(.010), r = 6 .582(.011), r = 83 .407(.007) .689(.010)
Low SNR .788(.013), r = 5 .863(.013), r = 5 .951(.015), r = 38 .850(.011) 1.027(.020)

Binary LRGC PPCA softImpute GLRM-hinge GLRM-logistic
High SNR .103(.003), r = 5 .116(.002), r = 6 .136(.003), r = 71 .140(.002) .117(.002)
Low SNR .205(.006), r = 5 .208(.005), r = 5 .234(.007, r = 61 .226(.006) .217(.005)

data, we use step functions f j with random selected cut points. We generate one

X with high SNR σ2 = 0.1 and one X with low SNR σ2 = 0.5. We set k = 5 and

the missing ratio as 60%.

We examine the sensitivity of each method to its key tuning parameter. Both

LRGC and PPCA do not overfit with large ranks. We report results using the best

tuning parameter in Table 3.1. The complete results and implementation details

appear in the appendix. All experiments are repeated 20 times.

Shown in Table 3.1, LRGC performs the best in all but one settings. The

improvement is significant for high rank continuous data. For low rank con-

tinuous data, PPCA performs the best as expected since the model is correctly

specified. The slightly larger error of LRGC is due to the error in estimating a

nonparametric marginal f. Notice both LRGC and PPCA admit much smaller

rank as best parameter.

50

Table 3.2: Imputation error for MovieLens 1M over 5 repetition. Run time is
measures in minutes.

Algorithm MAE RMSE Run time
LRGC 0.619(.002) 0.910(.003) 38(1)
softImpute 0.629(.003) 0.905(.003) 93(2)
MMMF-BvS 0.633(.002) 0.921(.002) 25(1)

3.5.2 Movielens 1M

We sample the subset of the MovieLens1M data [40] consisting of 2514 movies

with at least 50 ratings from 6040 users. We use 80% of observation as training

set, 10% as validation set, and 10% as test set, repeated 5 times. The results are

reported in Table 3.2. On a laptop with Intel-i5-3.1GHz Core and 8 GB RAM,

LRGC (rank 10) takes 38 mins in R, softImpute (rank 201) takes 93 mins in

R, and GLRM-BvS (rank 200) takes 25 mins in julia. We see that all the models

perform quite similarly on this large dataset. In other words, the gain from care-

fully modeling the marginal distributions (using a LRGC) is insignificant. This

phenomenon is perhaps unsurprising given that sufficiently large data matrices

from a large class of generative models are approximately low rank [90].

51

CHAPTER 4

IMPUTATION UNCERTAINTY QUANTIFICATION

This chapter develops multiple measures to quantify uncertainty of the imputa-

tion derived from the Gaussian copula model, including the low rank Gaussian

copula. This chapter is based on [102].

4.1 Introduction

Missing data imputation forms the first critical step of many data analysis

pipelines; indeed, in the context of recommender systems, imputation itself

is the task. The remarkable progress in low rank matrix completion (LRMC)

[15, 53, 76] has led it to wide use in collaborative filtering [78], transductive

learning [37], automated machine learning [98], and beyond. Nevertheless, re-

liable decision making requires one more step: assessing the uncertainty of the

imputed entries. While multiple imputation [81, 59] is a classical tool to quan-

tify uncertainty, its computation is often expensive and limits the use on large

datasets. For single imputation methods such as LRMC, very little work has

sought to quantify imputation uncertainty. The major difficulty in quantifying

uncertainty lies in characterizing how the imputations depend on the observa-

tions through the solution to a nonsmooth optimization problem. In [21], this

difficulty is avoided and confidence intervals for imputed real valued matrices

are provided, by assuming isotropic Gaussian noise and a large signal-to-noise

ratio (SNR). However, these assumptions are hardly satisfied for most noisy real

data.

52

The probabilistic principal component analysis (PPCA) model [86] provides

a different approach to quantify uncertainty. The PPCA model posits that the

data in each row is sampled iid from a Gaussian factor model. In this frame-

work, each missing entry has a closed form distribution conditional on the ob-

servations. The conditional mean, which is simply a linear transformation of

the observations, is used for imputation [101, 48]. However, the Gaussian as-

sumption is unrealistic for most real datasets.

Our contribution

The Gaussian copula model presents a compelling alternative that enjoys the

analytical benefits of Gaussians and yet fits real datasets well. Here we further

propose to quantify the uncertainty associated with a single Gaussian copula

imputation. Concretely, we construct confidence intervals for imputed real val-

ues and provide lower bounds on the probability of correct prediction for im-

puted ordinal values. Empirical results show our confidence intervals are well-

calibrated and our uncertainty measure predicts imputation error well: entries

with lower estimated uncertainty do have lower imputation error (on average).

Related work

Multiple imputation (MI) requires repeating an imputation procedure many

times to assess empirical uncertainty, often through bootstrap sampling [51, 5]

or Bayesian posterior sampling [14] including probabilistic matrix factorization

[67, 82]. The repeating procedure often leads to very expensive computation,

especially for large datasets. While variational inference can accelerate the pro-

53

cess in some cases [58], it may produce inaccurate results due to using overly

simple approximation. Moreover, proper multiple imputation generally relies

on strong distributional assumptions [67, 82]. In contrast, our quantified uncer-

tainty estimates are useful for a much broader family of distributions and can

be computed as fast as a single imputation. In addition, few MI papers explic-

itly explore the issue of calibration: does MI sample variance predict imputation

accuracy? We find that the answer is usually no. In contrast, our uncertainty

metric is clearly correlated with imputation accuracy.

Some interesting new approaches [19, 20] discuss constructing honest confi-

dence regions, which depends on some (possibly huge) hidden constants. How-

ever, these unknown hidden constants prevent its use in practice. In contrast,

our constructed confidence intervals are explicit.

4.2 Imputation uncertainty measure

Suppose we have observed a few entries xO of a vector x ∼ GC(Σ, f) with known

Σ and f. We can impute the missing entries xM as in Algorithm 1. Can we quan-

tify the uncertainty in these imputations? Different from LRMC model which

assumes a deterministic true value for missing locations, xM (as well as zM satis-

fying fM(zM) = xM) is random under the Gaussian copula model. Consequently,

the error x̂M−xM is random and hence uncertain even with deterministic impu-

tation x̂M. The uncertainty depends on the concentration of zM around its mean

E[zM|xO] and on the marginals fM. If fM is constant or nearly constant over the

likely values of zM, then with high probability the imputation is accurate. Oth-

erwise, the current observations cannot predict the missing entry well and we

54

should not trust the imputation. Using this intuition, we may formally quantify

the uncertainty in the imputations.

Imputation confidence interval

For continuous data, we construct confidence intervals using the normality of

zM|zO = f−1
O

(xO).

Theorem 2 (Uncertainty quantification for continuous data). Suppose x ∼

GC(Σ, f) with observations xO and missing entries xM and that f is elementwise

strictly monotone. For missing entry x j, for any α ∈ (0, 1), let z⋆ = Φ−1(1 − α
2), the

following holds with probability 1 − α:

x j ∈
[
f j(E[z j|xO] − z⋆Var[z j|xO]), f j(E[z j|xO] + z⋆Var[z j|xO])

]
=: [x−j (α), x+j (α)] (4.1)

where E[z j|xO] and Var[z j|xO] ares given in Eq. (2.8) and Eq. (2.9) withM replaced

by j, for j ∈ M.

If some observed variable in xO is not continuous, then Theorem 2 no longer

holds. In those cases, we may compute an approximate confidence interval by

assuming that zO has all probability mass at its conditional mean given xO and

then compute the normal confidence interval of zM as it does for all continuous

variables. The approximated confidence intervals are still reasonably well cali-

brated if there are not too many ordinal variables. However, a safer approach to

build confidence intervals by performing multiple imputation as in Algorithm 8

and taking a confidence interval on the empirical percentiles of imputed values.

55

Lower bound for correct ordinal prediction

For ordinal data, we lower bound the probability of correct prediction x j = x̂ j us-

ing a sufficient condition that z j is sufficiently close to its mean E[z j|xO]. General

results in bounding Pr(|x̂ j − x j| ≤ d) for any d ∈ N appear in the appendix. Note a

step function f j(z) with cut points set admits the form S: f j(z) = 1+
∑

s∈S 1(z > s).

Theorem 3 (Uncertainty quantification for ordinal data). Suppose x ∼ GC(Σ, f)

with observations xO and missing entries xM and that the marginal f j is a step

function with cut points S j, for j ∈ [p]. For missing entry x j and its imputation

x̂ j = f j(E[z j|xO]),

Pr(x̂ j = x j) ≥ 1 − Var[z j|xO]/d2
j where d j = mins∈S j

∣∣∣s − E[z j|xO]
∣∣∣ , (4.2)

where E[z j|xO] and Var[z j|xO] ares given in Eq. (2.8) and Eq. (2.9) withM replaced

by j, for j ∈ M.

Imputation reliability

To predict the imputation accuracy using the quantified uncertainty, we develop

a measure we call reliability. Entries with higher reliability are expected to have

smaller imputation error. We first motivate our definition of reliability. For

ordinal data, the reliability of an entry lower bounds the probability of correct

prediction. For continuous data, our measure of reliability is designed so that

reliable imputations have low normalized root mean squared error (NRMSE)

under a certain confidence level α.

Our definition of reliability uses Theorems 2-3 to ensure that reliable impu-

56

tations have low error.

Definition 4 (Imputation Reliability). Suppose X has iid rows xi ∼ GC(Σ, f) and

is observed on Ω ⊂ [n] × [p]. Complete X to X̂ row-wise using Definition 2. For

each missing entry (i, j) ∈ Ωc, define the reliability of the imputation x̂i
j as

• (if X is an ordinal matrix) the lower bound provided in Eq. (4.2);

• (if X is a continuous matrix) ||PΩc\(i, j)(Dα)||F/||PΩc\(i, j)(X̂)||F , where the (i′, j′)-

th entry of matrix Dα is the length of the confidence interval x̂i′,+
j′ (α)− x̂i′,−

j′ (α)

defined in Eq. (4.1).

For continuous data, the interpretation is that if the error after removing

(i1, j1) is larger than that after removing (i2, j2), then the imputation on (i1, j1)

is more reliable than that on (i2, j2). If continuous entries in different columns

are measured on very different scales, one can also modify the definition to

compute reliability column-wise.

Our experiments show this reliability measure positively correlates with im-

putation accuracy as measured by mean absolute error (MAE) for ordinal data

and NRMSE for continuous data. We also find for continuous data, the correla-

tion is insensitive to α in a reasonable range; α = .05 works well.

4.3 Experiments

The uncertainty measure proposed in this chapter applies to the general Gaus-

sian copula as well as the low rank Gaussian copula (LRGC). Here we use LRGC

as an example. Our experiments follow the settings in Section 3.5. We evaluate

57

whether our reliability measure (denoted as LRGC reliability) can predict im-

putation accuracy well, and the empirical coverage of our proposed confidence

intervals. For the second task, we evaluate the imputation on the m% entries

with highest reliability for varying m. We say a measure predicts imputation ac-

curacy if the imputation error on the m% entries is smaller for smaller m, i.e., it

positively correlates with imputation accuracy. We introduce below competitors

for each task. Implementation details appear in the appendix.

For reliability comparison, we compare with variance based reliability: the

imputation for a given missing entry is more reliable if it has smaller variance.

To obtain variance estiamte, we implement the PCA based MI method (denoted

as MI-PCA) [51, 52], and construct MI style uncertainty quantification for gen-

eral imputation algorithms: given an algorithm and incomplete X, divide the

observations into N parts. Then apply the algorithm N times, each time ad-

ditionally masking one part of the observations. Compute the variance of the

original missing entries across N estimates. We use N = 10 in this paper. We

denote such methods as MI+Algorithm for applied algorithm.

For confidence interval (CI) comparison, we compare with CI based on the

softImpute imputation (denoted as LRMC) [21] , CI based on PPCA and CI

based on MI-PCA. All constructed intervals except LRGC are derived assuming

normality: specifically, they all assume X = X⋆ + E for some low rank X⋆ and

isotropic Gaussian error E. In particular, their CIs are always symmetric around

the imputed value, while LRGC can yield asymmetrical CIs. See the appendix

for implementation details.

58

LowRank HighRank

25 50 75 100 25 50 75 100
0.0

0.2

0.4

0.6

0.8

Percentage of entries selected

N
R

M
S

E

Continuous

HighSNR LowSNR

25 50 75 100 25 50 75 100
0.00

0.25

0.50

0.75

1.00

Percentage of entries selected

M
A

E

1−5 Ordinal

HighSNR LowSNR

25 50 75 100 25 50 75 100
0.00

0.05

0.10

0.15

0.20

0.25

Percentage of entries selected

M
A

E

Binary

Method LRGC MI+softImpute MI+GLRM−l2 MI−PCA MI+GLRM−BvS MI+GLRM−logistic MI+GLRM−hinge

Figure 4.1: Imputation error on the subset of m% entries for which method’s
associated uncertainty metric indicates highest reliability, reported over 20 rep-
etitions (error bars almost invisible).

4.3.1 Synthetic experiments

Shown in Figure 4.1, LRGC reliability predicts the imputation accuracy well: en-

tries with higher reliability (smaller m) have higher accuracy. In contrast, entries

with higher variance based reliability can have lower accuracy. Even when the

variance based reliability predicts accuracy, LRGC reliability works better: the

error over selected entries using variance based reliability is much larger than

that of LRGC reliability when a small percentage of entries m are selected. LRGC

reliability can even find entries with error near 0 from very noisy (low SNR

1-5 ordinal and binary) data. LRGC reliability better predicts imputation error

for easier imputation tasks (lower rank and higher SNR). Predicting NRMSE is

challenging, since imputing continuous data is in general harder than imputing

ordinal data. In fact, we show in the appendix that as the number of levels of

the ordinal variable increases, the shape of the error vs reliability curve matches

that of continuous data.

The results on confidence intervals appear in Table 4.1. Notice constructing

MI-PCA intervals is much more expensive than all other methods. For low rank

Gaussian data, PPCA confidence intervals achieve the highest coverage rates

with smallest length as expected, since the model is correctly specified. LRGC

59

Table 4.1: 95% Confidence intervals on synthetic continuous data over 20 repe-
titions.

Low Rank Data LRGC PPCA LRMC MI-PCA
Empirical coverage rate 0.927(.002) 0.940(.001) 0.878(.006) 0.933(.002)
Interval length 1.273(.004) 1.264(.004) 1.129(.015) 1.267(.004)
Run time (in seconds) 6.9(.5) 3.4(.7) 2.7(.4) 189.8(15.4)

High Rank Data LRGC PPCA LRMC MI-PCA
Empirical coverage rate 0.927(.002) 0.943(.002) 0.925(.004) 0.948(.002)
Interval length 3.614(.068) 9.086(.248) 6.546(.191) 9.307(.249)
Run time (in seconds) 7.2(1.2) 0.4(.1) 3.1(.6) 220.0(30.2)

confidence intervals have slightly smaller coverage rates due to the error in es-

timating a nonparametric marginal f. For high rank data, the normality and

the low rank assumption do not hold, so all other constructed confidence in-

tervals but LRGC are no longer theoretically valid. Notably, LRGC confidence

intervals for more challenging high rank data achieves the same empirical cov-

erage rates as that for low rank data. The longer interval is due to the expanding

marginal transformation f j(z) = z3. While all other confidence intervals have vi-

sually good coverage rates, their interval lengths are much larger than LRMC

confidence intervals, which limits utility.

4.3.2 MovieLens 1M dataset

For the MovieLens 1M dataset, we exclude MI-PCA because it cannot finish

even a single imputation in 3 hours in R. We plot the imputation error versus

reliability in Figure 4.2. The value at m = 100 is the overall imputation error.

The variance based reliability with GLRM-BvS cannot predict imputation accu-

racy. In practice, collaborative filtering methods usually recommends very few

entries to users. In this setting, LRGC reliability predicts imputation accuracy

60

0.0

0.2

0.4

0.6

25 50 75 100

M
A

E

0.00

0.25

0.50

0.75

1.00

25 50 75 100

R
M

SE

Method

LRGC

MI+softImpute

MI+GLRM−BvS

Movielens 1M

Percentages of entries selected

0.0

0.2

0.4

0.6

25 50 75 100

M
A

E

0.00

0.25

0.50

0.75

1.00

25 50 75 100

R
M

SE

Method

LRGC

MI+softImpute

MI+GLRM−BvS

Movielens 1M

Percentages of entries selected

0.0

0.2

0.4

0.6

25 50 75 100

M
A

E

0.00

0.25

0.50

0.75

1.00

25 50 75 100

R
M

SE

Method

LRGC

MI+softImpute

MI+GLRM−BvS

Movielens 1M

Percentages of entries selected

Figure 4.2: Imputation error on the subset of m% entries for which method’s
associated uncertainty metric indicates highest reliability, reported over 5 repe-
titions (error bars almost invisible).

much better than variance based reliability with softImpute.

61

CHAPTER 5

ONLINE IMPUTATION

This chapter develops a new online missing value imputation algorithm using

a mini-batch Gaussian copula fitting algorithm. It is based on [105].

5.1 Introduction

Missing values also appear in online data, generated by sensor networks, or

ongoing surveys, as sensors fail or survey respondents fail to respond. In this

setting, online (immediate) imputation for new data points is important to fa-

cilitate online decision-making processes. However, most missing value impu-

tation methods, including missForest [85] and MICE [14], cannot easily update

model parameters with new observation in the online setting. Re-applying of-

fline methods after seeing every new observation consumes too much time and

space. Online methods, which incrementally update the model parameters ev-

ery time new data is observed, enjoy lower space and time costs and can adapt

to changes in the data, and hence are sometimes preferred even in the offline

setting.

Our contribution

Here we propose an online algorithm to impute missing values for long skinny

mixed data, including real-valued data and ordinal data as special cases. Our

online imputation method builds on the offline Gaussian copula imputation

model introduced in Chapter 2. We make two major contributions here:

62

• We propose an online algorithm for missing value imputation using the

Gaussian copula model, which incrementally updates the model and thus

can adapt to a changing data distribution. It does not need to store histor-

ical data.

• We develop a mini-batch Gaussian copula fitting algorithm to accelerate

the training in the offline setting and a parallel implementation. Com-

pared to the offline algorithm (Algorithm 3), our methods achieve nearly

the same imputation accuracy but being an order of magnitude faster,

which allows the Gaussian copula model to scale to larger datasets.

Inheriting the advantages of the Gaussian copula model, all our proposed

methods naturally handle long skinny mixed data with missing values, and

have no model hyperparameters except for common online learning rate pa-

rameters. This property is crucial in the online setting, where the best model

hyperparameters may evolve.

Related work

The Gaussian copula has been used to impute incomplete mixed data in the

offline setting using an EM algorithm (Algorithm 3). Here, we develop an online

EM algorithm to incrementally update the copula correlation matrix, following

[18], and an online method to estimates the marginals, so that there is no need

to store historical data except for the previous model estimate.

Existing online imputation methods mostly rely on matrix factorization

(MF). Online LRMC methods [7, 28] assume a low rank data structure. Con-

sequently, they work poorly for long skinny data, as the low rank assumption

63

generally fails [89]. Online KFMC [31] first maps the data to a high dimensional

space and assumes the mapped data has a low rank structure. It learns a non-

linear structure and outperforms online LRMC for long skinny data. However,

its performance is sensitive to a selected rank r, which should be several times

larger than the data dimension p and thus needs to be carefully tuned in a wide

range. As p increases, it also requires increasing r to outperform online LRMC

methods; for moderate p, the O(r3) computation time of online KFMC becomes

prohibitive. For all aforementioned MF methods, their underlying continuity

assumptions can lead to poor performance on mixed data. Moreover, the sen-

sitivity to the rank poses a difficulty in the online setting, as the best rank may

vary over time, and the rank chosen by cross-validation early on can lead to

poor performance or even divergence later.

While recent deep generative imputation methods [100, 62] look like online

methods (due to the SGD update), they actually require lots of data, and are

slow to adapt to changes in the data stream, which are unsatisfying for real-time

tasks. Deep time series imputation methods [17, 35] use the future to impute the

past, and thus do not suit the considered online imputation task.

5.2 Parameter estimation from online data

We can still use the general Gaussian copula imputation algorithm (Algo-

rithm 1):

x̂M = fM(E[zM|xO,Σ, f]) = fM(ΣM,OΣ
−1
O,OE[zO|xO,Σ, f]). (5.1)

64

The adaptation we need to make is to estimate parameters in an online way. We

first show how to estimate the transformation online and then how to estimate

the copula correlation online in with a given marginal estimate.

5.2.1 Online marginal transformation estimation

In the offline setting, we estimate the transformation f based on the observed

empirical distribution as in Section 2.4.1 and [60]: for j ∈ [p], using observations

in X j, we construct the estimates as:

f̂ j = F̂−1
j ◦ Φ, f̂ −1

j = Φ
−1 ◦ F̂ j. (5.2)

where F j and F−1
j are the empirical CDF and quantile function on the observed

entries of the j-th variable. In the online setting, we simply update the obser-

vation set as new data comes in for each column X j. Specifically, we store a

running window matrix X̃ ∈ Rk×p which records the k most recent observations

for each column, and update X̃ as new data comes in. The window size is an on-

line learning rate hyperparameter that should be tuned to improve accuracy. A

longer window works better when the data distribution is mostly stable but has

a few abrupt changes. If the data distribution changes rapidly, a shorter win-

dow is needed. Domain knowledge should also inform the choice of window

length.

Online datasets may have high autocorrelation, which can improve online

imputation. Thus it may be beneficial to allocate different weights to different

stored observations and imputing missing entries by empirical weighted quan-

65

tiles. For example, we can allocate decaying weights for the m stored observa-

tions: dt with d ∈ (0, 1] for each time lag t = 1, ...,m. The decay rate d should be

tuned for best performance. This approach interpolates between imputing the

last observed value (as d → 0) and the standard Gaussian copula imputation

(when d = 1).

5.2.2 Online copula correlation estimation

We estimate copula correlation matrix Σ through maximum likelihood estima-

tion (MLE). The offline method Section 2.4.2 applies EM algorithm to find the

Σ that maximizes the likelihood value. The key idea of our online estimation

is to replace each offline EM iteration with an online EM variant, which incre-

mentally updates the likelihood objective as new data comes in. This online

approach does not need to retain all data to perform updates. We first present

the offline likelihood objective to be maximized and then show how to update

it in the online setting.

Recall from Section 2.4.2, at EM iteration l+ 1 with estimate Σl from iteration

l, we need to maximize the objective function as below:

Q(Σ;Σl, {xi
Oi
}ni=1) =

1
n

n∑
i=1

E[ℓ(Σ; zi, xi
Oi

)|xi
Oi
,Σl, f̂]. (5.3)

The maximizer for Eq. (5.3) is simply the expected “empirical covariance ma-

trix” of the latent variables zi:

Σl+1 =

n∑
i=1

1
n
E[zi(zi)⊤|xi

Oi
,Σl, f̂]. (5.4)

66

The expectation weights these zi by their conditional likelihood value. At last

the the obtained estimate is scaled to have unit diagonal to satisfy the copula

model constraints: Σl+1 ← PE
(
Σl+1

)
.

Now we show how to adjust and maximize the objective Q in the online

setting. When data points come in different batches, i.e. rows S t+1 observed at

time t+1, it is proposed in [18] to update the objective function Q with new rows

as:

Qt+1(Σ) = (1 − γt)Qt(Σ) + γtQ(Σ;Σt, {xi
Oi
}i∈S t+1), (5.5)

with Q1(Σ) = Q(Σ;Σ0, {xi
Oi
}i∈S 1) given initial estimate Σ0 and a monotonically de-

creasing stepsize γt ∈ (0, 1). Using Eq. (5.5), we derive a very natural update

rule, stated as Lemma 7: in each step we simply take a weighted average of

the previous covariance estimate and the estimate we get with a single EM step

on the next batch of data. We require the batch size to be larger than the data

dimension p to obtain a valid update. One can still make an immediate predic-

tion for each new data point, but to update the model we must wait to collect

enough data or use overlapping data batches. If it is crucial to update the model

at each new data point, we can use use the most recent nb data points including

the new data point to conduct the model update for some nb ≥ p.

Lemma 7. For data batches {xi}i∈S 1 , ..., {xi}i∈S t with xi ∈ Rp and minl∈[t] |S l| > p, and

objective Qt(Σ) as in Eq. (5.5) for γt ∈ (0, 1). Given a marginal estimate f̂, for

l = 1, . . . , t, Σl B argmaxΣ Ql(Σ) satisfies

Σt+1 = (1 − γt)Σt +
γt

|S t+1|

∑
i∈S t+1

E[zi(zi)⊤|xi
Oi
,Σt, f̂]. (5.6)

We also project the resulting matrix to a correlation matrix as in the offline

67

setting. The update takes O(αp3|S t|) time with missing fraction α and |S t| rows.

The proof shows that online EM formally requires a weighted update to the

expectation computed in the E-step. But for our problem, the parameter Σ, com-

puted as the maximizer (in the M-step), is a linear function of the computed

expectation (from the E-step). Hence the maximizer also evolves according to

the same simple weighted update. A weighted update rule for the parameter

fails — leading to divergence — for more general models, when the maximizer

is not linear in the expectation, such as for the low-rank-plus-diagonal copula

correlation model in Section 3.2.

It is proved [18] an online EM algorithm converges to the stationary points of

the KL divergence between the true distribution of the observation π (not nec-

essarily the assumed model) and the learned model distribution, under some

regularity conditions. We adapt their result to Theorem 4.

Theorem 4. Let π(xO) be the distribution function of the true data-generating

distribution of the observations and gΣ(xO) be the distribution function of the

observed data from GC(Σ, f), assuming data is missing uniformly at random

(MCAR). Suppose the step-sizes γt ∈ (0, 1) satisfy
∑∞

t=1 γ
2
t <

∑∞
t=1 γt = ∞. Let

L = {Σ ∈ S p
++ : ∇ΣKL(π||gΣ) = 0} be the set of stationary points of KL(π||gΣ) for a

fixed f. Under two regularity conditions on π (see the supplement), the iterates

Σt produced by online EM (Eq. (5.6)) converge to Lwith probability 1 as t −→ ∞.

The conditions on stepsize γt are standard for stochastic approximation

methods. If the true correlation Σ generating the data evolves over time, a con-

stant stepsize γt ∈ (0, 1) should be used to adapt the estimate to the changing

correlation structure. We find using γi = c/(i + c) with c = 5 for the offline

setting and γi = 0.5 for the online setting gives good results throughout our

68

experiments. Further tuning over different step size may bring additional gain.

Algorithm 5 Online Imputation with the Gaussian Copula

Input: Window size k, step size γt for t ∈ [T].
1: Initialize Σ0 and running window matrix X̃ ∈ Rk×p.
2: for t = 1, 2, . . . ,T do
3: Obtain new data batch {xi}i∈S t , with xi partially observed at Oi and missing

atMi.
4: Replace the oldest point in X̃ j with xi

j for j ∈ Oi, i ∈ S t.
5: Estimate marginals f̂, f̂−1 using X̃ as in Eq. (5.2) .
6: EM step update: obtain Σt+1 as in Eq. (5.6).
7: Scale to a correlation matrix: Σt+1 = PE

(
Σt+1

)
.

8: Impute x̂i
Mi

using Σt+1 and f̂ as in Eq. (5.1) for i ∈ S t.
9: end for

10: return Imputation {x̂i
Mi
}i∈S t and Σt for t ∈ [T].

Online versus offline implementation We may estimate f̂ in Eq. (5.6) either

online or offline. The decision entails some tradeoffs. When the storage limit

is the main concern, as in the streaming data setting, we can employ the online

marginal estimate, storing only a running window and a correlation matrix esti-

mate. We call such an implementation fully online EM. When the data marginal

distribution evolves over time, it is also important to use online EM to forget

the old data. On the other hand, when training time is the main concern but

the whole dataset is available, the online EM algorithm can be implemented as

an offline mini-batch EM algorithm to accelerate convergence. In that setting,

the offline marginals are used to provide more accurate and stable estimates as

well as to reduce the time for estimating the marginals. We call this implementa-

tion (offline) mini-batch EM. We present the fully online algorithm in Algorithm 5

with data batches observed sequentially.

69

5.3 Experiments

The experiments are divided into two parts: online datasets (rows obtained se-

quentially) and offline datasets (rows obtained simultaneously). The online set-

ting examine the ability of our methods to learn the changing distribution of the

steaming data. The offline setting evaluate the speedups and the potential ac-

curacy lost due to minibatch training and online marginal estimation compared

to offline EM. See the appendix for more experiments under different data di-

mension, missing ratio and missing mechanisms.

Algorithm implementation we implement the offline EM algorithm Chapter 2,

the minibatch EM with online marginal estimate denoted by online EM, and

the minibatch EM with offline marginal estimate denoted by minibatch EM.

For imputation comparison, we implement GROUSE [7] and online KFMC

[31]. For fair comparison, we use 1 core for all methods, but report the ac-

celeration brought by parallelism for all Gaussian copula methods in the ap-

pendix. All experiments use a laptop with a 3.1 GHz Intel Core i5 processor

and 8 GB RAM. All EM methods are implemented using Python. We imple-

ment GROUSE and online KFMC using the authors’ provided Matlab codes

at https://web.eecs.umich.edu/˜girasole/grouse/ and https://

github.com/jicongfan/Online-high-rank-matrix-completion.

Tuning parameters selection

we do not use tuning parameter for offline EM and minibatch EM. We use 1 tun-

ing parameter for online EM: the window size m for online marginal estimates,

70

https://web.eecs.umich.edu/~girasole/grouse/
https://github.com/jicongfan/Online-high-rank-matrix-completion
https://github.com/jicongfan/Online-high-rank-matrix-completion

2 tuning parameters for GROUSE, the rank and the step size, and 2 tuning pa-

rameters for online KFMC, the rank in a latent space and the regularization

parameter.

For all methods, we use grid search to choose the tuning parameters. The

window size of online EM is selected from {50, 100, 200} for online experiments

and fixed as 200 for offline experiments. The constant c in step size c/t is se-

lected from {0.1, 1, 10} for GROUSE on offline experiments. The constant step

size c is selected from {10−8, 10−4, 10−2} for GROUSE on online experiments. The

rank is selected from {1, 5, 10} for GROUSE on all experiments. The rank is

selected from {200, 300, 400} and the regularization parameter is selected from

{0.1, 0.01, 0.001} for online KFMC on all experiments. Online KFMC also re-

quires a momentum update, for which we take the author’s suggested value

.5.

We note one other issue. For online algorithms, it is typical to choose hy-

perparameters during an initial “burn-in” period. For example, in GROUSE,

choosing the step-size from initial data can result in divergence later on as the

data distribution changes. As a result, the maximum number of optimization

iterations is also difficult to choose: the authors’ default settings are often insuf-

ficient to give good performance, while allowing too many iterations may lead

to (worse) divergence. We will report and discuss an example of divergence in

our online real data experiment.

Computational complexity For a new data vector in Rp with k observed en-

tries, GROUSE has the smallest computation time O(prg + kr2
g) with rank rg < p;

online EM comes second with computation time O(k3 + k(p− k)p); online KFMC

71

has the largest computation time O(r3
k) with rk > p.

5.3.1 Offline synthetic experiment

We construct a dataset consisting of 6000 i.i.d. data points drawn from a 15-

dimensional Gaussian Copula, with 5 continuous (exponential distribution with

parameter 1/3), 5 ordinal with 5 levels, and 5 binary entries, as in Section 2.5.1.

The cut points for generating the ordinal and binary entries are randomly se-

lected. We randomly mask 40% entries as missing: approximately 2 out of 5

entries for each data type are masked. We generate independent two identical

and independent datasets: one for choosing the tuning parameters, the other

for training and evaluating the performance. For GROUSE, the selected rank is

1 and the selected constant c in decaying stepsize c/t is 1. For online KFMC, the

selected rank is 400 and the selected regularization is .1. The used batch size is

100 for all methods.

Shown in Table 5.1, the minibatch and online variants of the EM algorithm

converge substantially faster than offline EM and provide similar imputation ac-

curacy. The results are especially remarkable for online EM, which estimates the

marginals using only 200 points. The minibatch variant is three times faster than

offline EM with the same accuracy. All EM methods outperform online KFMC

and GROUSE, and even median imputation outperforms GROUSE. Interest-

ingly, the best rank for GROUSE is 1. The results here show LRMC methods fit

poorly for long skinny datasets, although the selected best rank, 1, misleadingly

indicates the existence of low rank structure.

72

Table 5.1: Mean(sd) for runtime, imputation error of each data type for synthetic
offline data over 10 trials.

Method Runtime (s) Continuous Ordinal Binary
Offline EM 187.7(0.8) 0.79(.04) 0.84(.03) 0.63(.07)
Minibatch EM 48.2(0.5) 0.79(.04) 0.83(.03) 0.63(.07)
Online EM 54.5(3.4) 0.80(.04) 0.84(.02) 0.63(.07)
Online KFMC 79.6(1.6) 0.92(.03) 0.92(.02) 0.67(.08)
GROUSE 7.7(.3) 1.17(.03) 1.67(.05) 1.10(.07)

5.3.2 Online synthetic experiment

Now we consider streaming data from a changing distribution. To do this,

we generate and mask the dataset similar to Section 5.3.1, but set two change

points at which a new correlation matrix is chosen: x1, . . . , xt ∼ GC(Σ1, f),

xt+1, . . . , x2t ∼ GC(Σ2, f) and x2t+1, . . . , x3t ∼ GC(Σ3, f), with t = 2000. We repeat

the experiment 10 times. For each repetition, we randomly sample Σ1,Σ2 and

Σ3 and fix f, as in the offline experiments. We also generate independent two

identical and independent datasets: one for choosing the tuning parameters,

the other for training and evaluating the performance. We implement all on-

line algorithms from a cold start and make only one pass through the data, to

mimic the streaming data setting. For comparison, we also implement offline

EM and missForest [85] (also offline) and allow them to make multiple passes.

For online EM, the selected window size is 200. For GROUSE, the selected rank

is 1 and the selected constant stepsize is 10−6. For online KFMC, the selected

rank is 200 and the selected regularization is .1. The used batch size is 40 for all

methods.

Shown in Fig. 5.1, online EM clearly outperforms the offline EM on aver-

age, by learning the changing correlation. Online EM has a sharp spike in er-

ror as the correlation abruptly shifts, but the error rapidly declines as it learns

73

Figure 5.1: Mean imputation error and change point tracking statistics over 10
trials for online synthetic datasets. Each point stands for an evaluation over a
data batch of 40 points.

0 1000 2000 3000 4000 5000 6000

0.
8

1.
0

1.
2

1.
4

Continuous Columns
SM

AE

Online EM
Offline EM
GROUSE
Online KFMC
missForest

0 1000 2000 3000 4000 5000 6000
0.

8
1.

0
1.

2
1.

4
1.

6
1.

8
2.

0

Ordinal Columns

0 1000 2000 3000 4000 5000 6000

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Binary Columns

SM
AE

Row Numbers
0 1000 2000 3000 4000 5000 6000

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Change Point Tracking

0.
3

0.
4

0.
5

0.
6

0.
7

G
R

O
U

SE
: R

es
id

ua
l N

or
m

O
nl

in
e

EM
: C

or
re

la
tio

n
C

ha
ng

e

Online EM
GROUSE

Row NumbersRow Numbers Row Numbers

the new correlation. Both online EM and online KFMC outperform missForest.

Surprisingly, online KFMC cannot even outperform offline EM, which is only

able to impute using a single correlation estimate for all data points. GROUSE

performs even worse in that it cannot outperform median imputation as in the

offline setting. The results indicate online imputation methods can fail to learn

the changing distribution when their underlying model does not fit the data

well.

5.3.3 Offline real data experiment

To further show the speedup of the minibatch algorithms, we evaluate on a

subset of the MovieLens 1M dataset [40] that consists of all movies with more

than 1000 ratings, with 1-5 ordinal ratings of size 6939 × 207 with over 75%

entries missing. We divide all available entries into training (80%), validation

(10%) and testing (10%). For GROUSE, the selected rank is 5 and the selected

constant c in decaying step size c/t is 1. For online KFMC, the selected rank is

200 and the selected regularization parameter is .1. The used batch size is 121

74

Table 5.2: Mean(sd) for runtime and imputation error on a subset of Movie-
Lens1M data over 10 trials.

Method Runtime (s) MAE RMSE
Offline EM 1690(9) 0.583(.002) 0.883(.004)

Minibatch EM 252(2) 0.585(.003) 0.886(.003)
Online EM 269(3) 0.590(.002) 0.890(.003)

Online KFMC 176(21) 0.631(.005) 0.905(.006)
GROUSE 27(2) 0.634(.003) 0.933(.004)

for all methods.

Table 5.2 shows that the minibatch and online EM still obtain comparable ac-

curacy to the offline EM. The minibatch EM is around 7 times faster than the of-

fline EM. All EM methods significantly outperform online KFMC and GROUSE.

Interestingly, as the dataset gets wider, online KFMC loses its advantage over

GROUSE. The results here indicate the nonlinear structure learned by online

KFMC fails to provide better imputation than the linear structure learned by

GROUSE. In contrast, the structural assumptions of our algorithm retain their

advantage over GROUSE even on wider data.

5.3.4 Online real data experiment

We now evaluate online missing data imputation on the daily prices and re-

turns of 30 stocks currently in the Dow Jones Industrial Average (DJIA) across

5030 trading days. Three stocks have missing entries (90.6%, 16.9% and 35.6%)

corresponding to dates before the stock was publicly traded. We construct a

dataset of size 5029 × 60, where the first 30 columns store yesterday’s price (or

log return) and last 30 columns store today’s. We scan through the rows, mak-

ing online imputations. Upon reaching the t-th row, the first t − 1 rows and

75

Figure 5.2: The imputation error for the DJIA daily price (left) and the DJIA daily
log-returns (right), averaged over all stocks. Each point stands for an evaluation
over a time interval of 40 points.

0
20

40
60

80
10

0
Price Prediction

R
M

SE

Online EM
GROUSE
Online KFMC

Dates (Year-Month)
0.

00
0.

05
0.

10
0.

15
0.

20

Log Return Prediction

R
M

SE
08-11

10-12
12-05

15-01
19-01

20-04
Dates (Year-Month)

08-11
10-12

12-05
15-01

19-01
20-04

the first 30 columns of the t-th row are completely revealed, while the last 30

columns of the t-th row are to be predicted and thus masked. Once the pre-

diction is made and evaluated, the masked entries are revealed to update the

model parameters. such dataset allows the imputations methods can learn both

the dependence among different stocks and the auto-dependence of each stock.

We use first 400 days’ data to train the model and the next 400 days’ data as a

validation set to choose the tuning parameters, and all remaining data to eval-

uate the model performance. For online EM, the selected window size is 50 for

price prediction and 200 for log return prediction. For GROUSE, the rank and

the constant step size are selected as {10, 10−6} for price prediction, and {1, 10−6}

for log return prediction. For online KFMC, the rank and the regularization are

selected as {300, 0.1} for both the price prediction and the log return prediction.

The used batch size is 40 for all methods.

76

In Fig. 5.2, the left plot shows that all methods predict prices well early on,

but GROUSE and online KFMC both diverge eventually. GROUSE starting from

around 2013 and online KFMC starting from around 2017. In contrast, online

EM has robust performance throughout. Although the imputation error peaks

around the start of 2020, online EM is able to quickly adjust to the changing dis-

tribution: the imputation error quickly falls back. Thus online EM stands out

in that it obviates the need of online hyperparameter selection to have stable

performance. The right plot shows that online EM and GROUSE perform simi-

larly on log returns: their error curves almost overlap each other. Online KFMC

underperforms: it makes large errors more often. We conjecture GROUSE and

online KFMC perform better on the log returns than on the price data because

the scale of the data is stable, so that hyperparameters chosen early on still ex-

hibit good performance later. The good performance of GROUSE indicates the

asset log returns are approximately low rank, Still, online EM is robust to differ-

ent (even changing) marginal data distributions and performs well on approxi-

mately low rank data.

5.4 Discussion

This chapter develops an algorithm to incrementally update on the Gaussian

copula model using mini batch of data. One important future direction would

extend the online Gaussian copula estimation to wide datasets, using low rank

Gaussian copula Chapter 3, to ensure the computational complexity scales lin-

early in the number of observations.

77

CHAPTER 6

ONLINE DEPENDENCE CHANGE POINT DETECTION

This chapter develops a new method to detect change points in the multivariate

dependence structure in online data with missing values, by fitting a Gaussian

copula model and tracking the magnitude of the copula correlation update. It

is based on Zhao et al. [105].

6.1 Introduction

A common interest for online data (or time series) is change point detection:

does the data distribution change abruptly, and can we pinpoint when the

change occurs? While there are many different types of temporal changes, we

focus on changes in the dependence structure of the data, a crucial issue for

many real world applications. For example, classic Markowitz portfolio design

uses the dynamic correlation structure of exchange rates and market indexes to

design a portfolio of assets that balances risk and reward [61].

Our contribution

Here we detect changes in the dependency structure of online long skinny

mixed data, based on the online estimation of Gaussian copula model intro-

duced in Chapter 5. Concretely, we propose a Monte Carlo test for dependence

structure change detection at any time. The method tracks the magnitude of

the copula correlation update and reports a change point when the magnitude

exceeds a threshold. Inheriting the advantages of the Gaussian copula model,

78

our proposed online change point detection algorithm naturally handles long

skinny mixed data with missing values.

Related work

Change point detection (CPD) is an important topic with a long history. See [2]

for an expansive review. Online CPD seeks to identify change points in real-

time, before seeing all the data. Missing data is also a key challenge for CPD:

most CPD algorithms require complete data. The simplest fix for this problem,

imputation followed by a complete-data CPD method, can hallucinate change

points due to the changing missingness structure or imputation method used.

Our proposed method avoids these difficulties. Another workaround, Bayesian

online CPD methods [1, 33], can fill out the missing entries by sampling from its

posterior distribution given all observed entries.

6.2 Monte Carlo test for change point detection

We first outline the CPD problem in the context of the Gaussian copula

model. Consider a sequence of incomplete mixed data observations x1, . . . , xT ∼

GC(Σ, f), where xi is observed at locations Oi for i ∈ [T]. We wish to iden-

tify whether there is a change point t0 — a time when the copula correla-

tion Σ changes substantially — and if so, when this change occurs. We for-

mulate the single CPD problem as the following hypothesis test, for fixed t0:

79

x1, . . . , xt0 ∼ GC(Σ, f), and xt0+1, . . . , xT ∼ GC(Σ̃, f),

H0 : Σ̃ = Σ versus H1 : Σ̃ , Σ. (6.1)

We assume time-invariant marginal f. In practice, it suffices for f to be stable in a

small local window. The latent correlation matrix changes, reflecting the chang-

ing dependence structure. To detect a change-point, a test statistic is computed

for each point to measure the deviation of new points from old distribution. A

change is detected if the test statistic exceeds a certain threshold. We consider

the online detection problem instead of a retrospective analysis with all data

available. Specifically, to test whether a change occurs at time t0, we may use

only the data xt0+1, . . . , xT for a small window length T − t0 and the fitted model

at time t0.

To derive a test statistic, notice that Σ−1/2Σ̃Σ−1/2 = Ip under H0. Thus for some

matrix norm h, we use the matrix distance d(Σ, Σ̃; h) = h(Σ−1/2Σ̃Σ−1/2 − Ip) to mea-

sure the deviation of new points from old distribution. While Σ and Σ̃ are un-

known, we replace them with the estimates Σt0 and ΣT , generated by the EM it-

eration up to time t0 and time T , respectively. Thus we construct our test statistic

as d(Σt0 ,ΣT ; h): large values indicate high probability of a change point. Exper-

imentally, we find that different choices of h give very similar trends. Hence

below we report results using the Frobenius norm as h, to reduce computation.

The change point is detected when d(Σt0 ,ΣT ; h) exceeds some threshold bα,

which is chosen to control the false-alarm rate α. Calculating bα analytically

requires the asymptotic behaviour of the statistic under the null distribution,

which is generally intractable including our case. We use Monte Carlo (MC)

80

methods to simulate the null distribution of our test statistic and select the

threshold. This method is similar to the permutation test for CPD [63]. We

present our test for the hypothesis in Eq. (6.1) as Algorithm 6 . Notice com-

paring d(Σt0 ,ΣT ; h) to bα is equivalent to comparing the returned empirical p-

value with the desired false-alarm rate α. See [27, 69] for the use of empirical

p-values. In practice, α can be regarded as a hyperparameter to tune the false

positive/negative rate.

Algorithm 6 Monte Carlo test for Gaussian copula correlation change point de-
tection
Input: New data {xi}Ti=t0+1, the number of samples B, estimated model Σt0 ,ΣT and

f t0 .
1: Compute the test statistic s = d(Σt0 ,ΣT).
2: for j = 1, 2, . . . , B do
3: Sample yi ∼ GC(Σt0 , f t0) and mask yi at where xi+t0 is missing for i = 1, ...,T−

t0.
4: Update the model at t0 with new points {yi}

T−t0
i=1 using Eq. (5.6).

5: Compute s j = d(Σt0 ,ΣT, j) with the updated correlation ΣT, j.
6: end for

Output: The p-value (|{s j : s ≤ s j}| + 1)/(B + 1).

6.3 Sequential multiple change points detection

So far we have introduced a method to determine whether a change point oc-

curs at a time t0 using the new data {xi}Ti=t0+1. In the online setting, we will seek

to detect whether a change point occurred at the start of any of the time inter-

vals S 1, . . . , S T using the corresponding data batches {xi}i∈S 1 , . . . , {xi}i∈S T . (Notice

that we can detect a change point at any time by using overlapping time win-

dows.) To do so, we can apply our MC test to every new data batch {xi}i∈S t for

t ∈ [T]. Unfortunately, controlling the significance level for each test still yields

too many false positives due to the number of tests T . Instead, we use online

81

FDR control methods [74, 50, 75] to control the FDR to a specified level across

the whole process. At each time point, the decision as to whether a change point

occurs is made by comparing the obtained p-values from the MC test with the

allocated time-specific significance level, which only depends on previous deci-

sions. We summarize the sequential algorithm in Algorithm 7.

Algorithm 7 Online change point detection via Gaussian copula

Input: Online FDR control algorithmA, time windows S 1, . . . , S T , the FDR level
α, and an initial model estimate Σ0 and f0.

1: for t = 1, 2, . . . ,T do
2: Obtain new data batch {xi}i∈S t

3: Update the model estimate as Σt and f t as in Algorithm 6.
4: Obtain the MC p-value pt with new data {xi}i∈S t , Σt−1,Σt and f t−1 as input.
5: Obtain the significance αt = A({R1, . . . ,Rt−1}).
6: Set the binary decision Rt = 1 if pt < αt and 0 otherwise.
7: end for

Output: Decisions {Rt}t∈[T] and p-values {pt}t∈[T].

If the time intervals are very short, it can be useful to set a burn-in period

to estimate the new correlation matrix before attempting to detect more change

points in order to prevent false positives. Our method as stated is designed to

detect change points quickly by using the model at the end of the time interval

as an estimate for the new model Σ̃. Instead, one could wait longer to com-

pute a better estimate of Σ̃ to assess whether a change point had occurred in an

earlier interval. This approach detects change points slower and requires more

memory than our approach, but could deliver higher precision.

We point out an important practical concern: online FDR control methods

often allocate very small significance levels (< 10−4) in practice [79], while the

smallest p-value that the MC test with B samples can output is 1/(B+ 1). Under

the null that no change point happens, the probability that the test statistics s

is larger than all {s j} j∈[B] computed from MC samples is 1/(B + 1). Thus only

when B is very large (> 104) can a MC test possibly detect a change point. Set-

82

ting B this large is usually computationally prohibitive. One ad-hoc remedy is

to use the biased empirical p-value #{: s ≤ s j}/(B + 1), which can output a p-

value of 0; however, this approach is equivalent to choose all significance levels

αt ∈ (1
B+1 ,

2
B+1). Developing a principled approach to online FDR control that

can target less conservative significance levels (higher power) in the context of

online CPD constitutes important future work.

6.4 Experiments

Here we examine the ability of our method to detect the changing distribution

in online data, using the same data generating setting as in Section 5.3.2.

Implementation details

We also implement the online Bayesian change point detection (BOCP) algo-

rithm [1], one of the best performing CPD method according to a recent evalua-

tion paper [94]. The norm of subspace fitting residuals for GROUSE [7] can also

serve for CPD: a sudden peak of large residual norm indicates abrupt changes.

Although it lacks a formal criterion to conduct CPD on the residuals, it pro-

vides an intuitive visual illustration of the changes of the online model. We

compare our test statistic, defined in Algorithm 6, with the residual norms from

GROUSE, to see which identifies change points more accurately.

We select tuning parameters for online EM and GROUSE in the same way as

described in Section 5.3. BOCP requires 4 hyperparameters for its priors and its

hazard function [1]. We choose them with a uniform random search [8]. BOCP

83

is implemented using the R package ocp [71].

Results

Shown in Fig. 6.1, our correlation deviation statistic provides accurate predic-

tion for change points, while the residual norms from GROUSE remains sta-

ble after the burn-in period for model training, which verifies GROUSE cannot

adapt to the changing dependence here (stated in Section 5.3.2).

Show in Fig. 6.2, online EM successfully detects both change points in all rep-

etitions. In fact, the algorithm detects a change point (of decreasing magnitude)

during several batches after each true change, showing how long it takes to fi-

nally learn the new dependence structure. To avoid the repeated false alarms,

one could set a burn-in period following each detected change point. In con-

trast, BOCP only reports one false discovery, showing its inability to detect the

changing dependence structure.

6.5 Discussion

We presented an online change point detection method using Gaussian copula

for long skinny mixed datasets. Developing a method to identify changes in the

marginal distribution and a less conservative online FDR control method that

supports online change point detection by utilizing the dependence structure of

sequential tests are important future work.

84

0 1000 2000 3000 4000 5000 6000

0.
8

1.
0

1.
2

1.
4

Continuous Columns

SM
AE

Online EM
Offline EM
GROUSE
Online KFMC
missForest

0 1000 2000 3000 4000 5000 6000

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Ordinal Columns

0 1000 2000 3000 4000 5000 6000

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Binary Columns

SM
AE

Row Numbers
0 1000 2000 3000 4000 5000 6000

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Change Point Tracking

0.
3

0.
4

0.
5

0.
6

0.
7

G
R

O
U

SE
: R

es
id

ua
l N

or
m

O
nl

in
e

EM
: C

or
re

la
tio

n
C

ha
ng

e

Online EM
GROUSE

Row NumbersRow Numbers Row Numbers

Figure 6.1: Mean change point tracking statistics over 10 trials for online syn-
thetic datasets. Each point stands for an evaluation over a data batch of 40
points.

0
1

2
3

4
7

8
9

10

Reported Change Points Over 10 Reptitions

Time Point
2000
Change Point

C
ha

ng
e

Po
in

t C
ou

nt
s

Online EM
BOCP

4000
Change Point

Figure 6.2: Change points from online EM detection (ours) and BOCP over 10
trials in online synthetic experiments. Each bar stands for a decision over a data
batch of 40 points.

85

CHAPTER 7

EXTENDING GAUSSIAN COPULA TO HANDLE CATEGORICAL DATA

In this chapter, we show how to extend the Gaussian copula model, previously

defined in Section 2.2, to further handle categorical variables. This chapter is our

most recent work, and has not yet been made public outside of this dissertation.

7.1 Introduction

Missing data imputation is the first critical step of many data analysis pipelines,

since missing entries are abundant in modern datasets and most machine learn-

ing algorithms require complete data input. The imputation task is challenging

with categorical variables, which take values from unordered categories. Cat-

egorical variables frequently appear in real world dataset, often alongside or-

dered variables including continuous and ordered categorical variables. It is

crucial for an imputation algorithm to be able to impute both categorical and

ordered variables using all observation accurately and efficiently. While there

has been many missing data imputation algorithms, not many of them take cat-

egorical variables into consideration. The choices for imputing categorical and

ordered variables are even fewer.

A sensible model treats categorical data as generated by transforming a la-

tent continuous vector, using the softmax operator or argmax operator. There

are several advantages for this continuous representation. First, the number

of possible observation grows exponentially with vector length for a categorical

vector, and many of them may never be observed in practice. Using a latent con-

86

tinuous vector, the number of free parameters we need is often just quadratic

with vector length, and thus addresses the sparsity problem. Second, we can

model the interaction between categorical and continuous variables now using

methods for continuous vectors, which are rich. Here our work models a cat-

egorical variable as the argmax of a latent Gaussian vector. Our work further

models a categorical vector by concatenating the latent Gaussian vector for each

variable. The choice of Gaussianity is inspired by the Gaussian copula model

[103], which models a mixed data vector with all ordered variables as a ele-

mentwisely transformed Gaussian vector. Combining our proposition and the

Gaussian copula, we propose the extended Gaussian copula for categorical and or-

dered variables mixed data vector. The model associates each categorical vari-

able with a latent normal vector and each ordered variable with a latent normal

scalar. Each variable is obtained by transforming its associated latent Gaussian.

The data dependence structure is captured by latent Gaussian correlations.

Contribution

We propose a joint distribution model for categorical and ordered variables

mixed data as transformed Gaussian, the extended Gaussian copula. The ordered

variables may be continuous, binary, ordinal or truncated. As a special case, our

proposition models multivariate categorical vectors. Same as the Gaussian cop-

ula, the extended Gaussian copula does not require any model hyperparameter

and makes no assumption for the data marginal distribution.

We propose fitting algorithms for our extended Gaussian copula, which con-

sists of two steps. The first step solves for the latent Gaussian mean vector so

that its argmax has exactly the same distribution as the desired categorical vari-

87

able. The second step reduces the dependence structure estimation to that of

the Gaussian copula for ordered variables only which is already known [103].

We develop imputation methods for both missing categorical and missing

ordered variables using all available observation within our extended Gaussian

copula. The developed imputation methods include both single imputation and

multiple imputation and can be used for online imputation.

Related work

Modeling a categorical variable as the argmax of a latent continuous vector is

a classical technique appearing in the multinomial probit model [13, 65]. Our

proposition greatly differs from the multinomial probit model in that it does not

require explanatory variables. Instead, our work is more closely related to [23],

which firstly proposed to extend the Gaussian copula to accommodate categor-

ical variables, inspires While our models are very similar, the model in [23] has

redundant parameters and thus is unidentifiable. We instead have an identifi-

able model after removing redundant parameters. Moreover, we firstly show

that the extended Gaussian copula is capable of modeling arbitrary categorical

variable and provide a very accurate marginal fitting algorithm.

Notation For a function f (x) from RK to R where K ∈ N, we define f −1(y) as the

set {x : f (x) = y}. Here is one exception: for 1D cumulative distribution function

(CDF) F(x), we define F−1(y) = inf{x ∈ R : F(x) ≥ y}. We use argmax(z) to denote

the index of the maximum in vector z = (z1, . . . , zp): argmaxl=1,...,p(z1, . . . , zp).

88

7.2 Categorical variables as transformed Gaussian

In this section, we first show how to model a categorical variable by transform-

ing a latent Gaussian vector. Then we extend it to model the joint distribution of

a categorical vector and further the joint distribution of a mixed data vector with

both categorical and ordered variables. To ease the notation, we assume that all

categorical variables take value from K categories encoded as {“1”, . . . , “K”}. It

is straightforward to allow categorical variables have different number of cate-

gories.

7.2.1 Univariate categorical variable

We model a univariate categorical variable x with K categories as the argmax

of a K-dim latent Gaussian z = (z1, . . . , zK) with some mean µ = (µ1, . . . , µK) and

identity covariance. That is,

x := argmax(z + µ), where µ1 = 0, z ∼ N(0, IK). (7.1)

We restrict µ1 = 0, because only the difference among entries of z matters for

the resulting argmax’s distribution. The first dimension, z1, serves as a base di-

mension. While a dense covariance matrix for z is sometimes used [23], we show

in Theorem 5 that it is unnecessary, because the model in Eq. (7.1) is capable of

modeling arbitrary categorical variable and identifiable.

Theorem 5 (Existence and Uniqueness). For a categorical distribution with

probability mass function P(x = “k”) = pk > 0 for k = 1, . . . ,K and
∑K

k=1 pk = 1,

89

there exists a unique µ ∈ RK such that:

P(argmax(z + µ) = k) = pk, where µ1 = 0, z ∼ N(0, IK), (7.2)

for k = 1, . . . ,K.

Given a categorical variable, algorithm to estimate µ is described later in

Section 7.4.1.

7.2.2 Multivariate categorical vector

We now extend Eq. (7.1) to model a categorical vector x = (x1, . . . , xp) is straight-

forward. We simply concatenate the latent normal vectors corresponding to

different categorical variables into one vector. While we impose identity covari-

ance assumption on the latent normal vector for each categorical variable, we

allow the latent normal variables corresponding to different categorical vari-

ables to be correlated. However, the base dimension is still restricted to not

correlate with any other dimension. That is, we use the following model:

z = (z(1), . . . , z(p)) ∼ N(0,Σ),

x j = f j(z(j);µ(j)) := argmax(z(j) + µ(j)) with µ(j)
1 = 0, (7.3)

and Σ ∈ RpK×pK satisfies that

Σ[j],[j] = IK and Σ[j]1,−[j]1 = 0, where [j] = {(j − 1)K + l|l = 1, . . . ,K}. (7.4)

90

for j = 1, . . . , p. We use ΣI,J to denote the submatrix of Σ with rows in I and

columns in J. A negative set −I means all the index excluding those in I. Note

(1) [j] denotes the index of z(j) in z, and we restrict Σ[j],[j] = IK according to

Eq. (7.1); (2) [j]1 denotes the index of z(j)
1 , the base dimension of z(j), in z, and we

restrict Σ[j]1,−[j]1 = 0 to enforce zero correlation between a base dimension and

any other dimension.

While Σ introduces dependence structure among x, the value of µ(j) solely

determines the marginal distribution of x j, because the marginal distribution of

z(j) is N(0, IK) and independent of Σ. The ability to separate marginal distribu-

tion from dependence structure is very similar to that in the Gaussian copula

for ordered variables [103].

7.2.3 Mixed data with categorical and ordered variables

In this section, we extend the Gaussian copula model for ordered variables to

model mixed data containing both categorical and ordered variables. Note our

proposition for categorical variables in Eq. (7.3) shares the same form as x = f(z)

in the Gaussian copula, except that a categorical variable x j is generated using a

normal vector z(j) instead of a normal scalar z j. Combining the two latent models

together, we propose the following extended Gaussian copula model for mixed

data with both categorical and ordered variables.

Definition 5 (Extended Gaussian copula). For a mixed data vector x = (xcat, xord)

where xcat is a pcat-dim categorical vector and xord is a pord-dim vector ad-

mitting marginal CDF, we say x follows the extended Gaussian copula x ∼

EGC(Σ, ford,µ), if there exists a correlation matrix Σ, an elementwise monotone

91

ford and µ such that for z = (zcat, zord) ∼ N(0,Σ),

xcat = fcat(zcat;µ) = (f cat
1 (z(1);µ(1)), . . . , f cat

pcat
(z(pcat);µ(pcat))), for zcat = (z(1), . . . , z(pcat)),

xord = ford(zord) = (f ord
1 (z1), . . . , f ord

pord
(zpord)), for zord = (z1, . . . , zpord).

where f cat
j (·;µ(j)) has the form as in Eq. (7.3) and Σ satisfies the constraints in

Eq. (7.4) (assuming zcat appears before zord in z).

Compared to the original Gaussian copula, there are a few key differences.

First, the latent z is now longer than the data x. Second, there now exists vec-

tor to scalar transformation functions. Third, previously unrestricted copula

correlation Σ now has restrictions. For simplicity, we also write x = f(z) =

(fcat(zcat;µ), ford(zord)) and use f to refer to all transformation parameters, i.e.

(µ, ford).

7.3 Missing data imputation

In the extended Gaussian copula, we want to impute the missing entries using

all the observed entries. Here we first show how to impute missing values with

known model parameters. For model parameter estimation, see Section 7.4.

Note each categorical x j corresponds to K consecutive entries in z, i.e. z(j)

that generates x j. When we use a set I to index (pcat + pord)-dim x, we use [I]

to denote the corresponding entries in (pcatK + pord)-dim z. For example, [j] in

Eq. (7.4) follows this notation with I = { j}. We will use two special sets of I: O

andM as the observed and the missing entries of x, respectively. Thus [O] and

92

[M] are the latent dimensions in z that generates xO and xM, respectively.

We use the same imputation strategy used in [103]. That is, the imputation

of xM follows the order of

xO
f−1
O

−−→ z[O]
Σ
−→ z[M]

fM
−−→ xM.

In other words, we first translate the observed information into the latent space,

then impute the latent dimensions utilizing that z[M]|z[O] is Gaussian distributed,

and then transform the imputed latent variables back to the data space.

Multiple imputation. Multiple imputation (MI) creates several imputed

dataset by sampling from the distribution of missing entries conditional on the

observation. The uncertainty due to imputations can be propagated into sub-

sequent analyses by analyzing each imputed dataset. MI is commonly used in

supervised learning when features have missing entries: a researcher first forms

a prediction using each imputed dataset, and then pool all predictions into a sin-

gle prediction using mean or majority vote.

For the extended Gaussian copula, we specify the distribution of xM based

on two facts: (1) given xO, z[O] is normal distributed and truncated into f−1
O

(xO);

(2) z[M]|z[O] is normal distributed. The algorithm is presented in Algorithm 8.

For sampling the truncated normal z[O]|xO, see Section 7.4.3.

Single imputation. Namely, single imputation returns a single imputed

dataset. To provide a single imputation under the extended Gaussian copula,

93

Algorithm 8 Multiple imputation via the extended Gaussian Copula

1: Input: # of imputations m, data vector x observed at O, model parameters f
and Σ.

2: for s = 1, 2, . . . ,m do
3: Sample ẑ(s)

[O] ∼ z[O]|xO : N(0, Σ̂[O],[O]) truncated to f−1
O

(xO)

4: Sample ẑ(s)
[M] ∼ z[M]|z[O] : N

(
Σ[M],[O]ẑ(s)

[O],Σ[M],[M] − Σ[M],[O]Σ
−1
[O],[O]Σ[O],[M]

)
5: Compute x̂(s)

M
= fM(ẑ(s)

[M])
6: end for
7: Output: {x̂(s)

M
|s = 1, ..,m}.

we use

x̂M = fM(E[z[M]|xO,Σ, f]) = fM(Σ[M],[O]Σ
−1
[O],[O]E[z[O]|xO,Σ, f]), (7.5)

where we do mean computation instead of sampling for z[M]. For computing

E[z[O]|xO,Σ, f], see Section 7.4.3. With a known E[z[O]|xO,Σ, f] and fM, computing

x̂M is straightforward. Specifically, for missing categorical variable x j, we first

compute ẑ[j] := E[z[j]|xO,Σ, f] ∈ RK , then we compute f j(ẑ[j];µ(j)) as in Eq. (7.3).

Online imputation. Online imputation refers to the task of imputing missing

entries in data streams arriving at different time. We can conduct online impu-

tation for the extended Gaussian copula similar to that for the Gaussian copula

[105]: at each newly arrived incomplete data, we impute the missing entries

with current saved model, and then update model parameters f and Σ using the

new observation. The model updating rules share the same form as in [105].

7.4 Parameter estimation

The parameter estimation for the extended Gaussian copula consists of two

steps: we first estimate the marginal transformation f, and then estimate the

94

copula correlation Σ given estimated marginal f̂. The marginal transformation

differs for ordered and categorical variables. For an ordered x j, since f j = F−1
j ◦Φ,

we can simply estimate F−1
j using the empirical quantile function on the ob-

served entries of x j as in [103]. In Section 7.4.1, we show how to estimate f j(·;µ(j))

in Eq. (7.3) for a categorical variable x j. For the copula correlation, we show that

its estimation under extended Gaussian copula can be reduced to that under the

Gaussian copula for ordered variables, and thus we can use existing estimation

algorithms in [103] for our task.

7.4.1 Marginal estimation for categorical variables

We drop the variable subscript j in this section to ease the notation. Estimating

the marginal parameters µ in Eq. (7.2) requires solving K − 1 nonlinear equa-

tions with K − 1 unknown values. Although the true category frequency pk is

not available, we can estimate them using the observed frequency. Unfortu-

nately, Eq. (7.2) does not admit a closed form solution. Thus we resort to itera-

tive root finding algorithms. However, iterative root finding algorithms require

both value and derivation evaluation of the left hand side (LHS) of Eq. (7.2),

P(argmax(z + µ) = k), which is a K-dimensional multivariate Gaussian integral.

Value and derivation evaluation for this integral function is cumbersome. We

apply two approximation techniques to achieve efficient evaluation.

First we approximate probability of argmax as an expected softmax by notic-

ing:

P(argmax(z + µ) = k) = lim
β→∞

E
[
softmax(β(zk + µk); β(z + µ))

]
,

95

where softmax(zk; z) = exp(zk)/
∑K

l=1 exp(zl). This approximation is accurate for

large β. Second, using the reparameterization trick [54], we approximate the

expected softmax using Monte Carlo samples:

E
[
softmax(β(zk + µk); β(z + µ))

]
≈

1
M

M∑
i=1

softmax(β(z̄i
k + µk); β(z̄i + µ)), (7.6)

where z̄i i.i.d.
∼ N(0, IK). The RHS of Eq. (7.6) now has easy to evaluate value

and gradient. In summary, after approximation, we solve µ in the nonlinear

systems Eq. (7.7). We find the modified Powell method implemented in SciPy

computes an accurate solution of Eq. (7.7).

1
M

M∑
i=1

softmax(β(z̄i
k + µk); β(z̄i + µ)) = pk, with µ1 = 0, (7.7)

for k = 2, . . . ,K.

The two approximation techniques share many similarities to that used for

the Gumbel-softmax distribution [49]. The difference lies in the underlying

distribution of the latent continuous z: the Gumbel-softmax uses independent

Gumbel distribution, while we use independent normal. Different choices of

underlying distribution serve for different goals. Using Gaussian distribution,

it is easy to model the joint distribution of categorical variables as well as their

mix with ordered variables.Using Gumbel distribution, the argmax probabil-

ity (LHS in Eq. (7.2)) has closed form expression on its parameter (like our µ).

Thus it is simple to compute the gradients of the argmax probability w.r.t. its

parameter.

96

7.4.2 Copula correlation estimation

To estimate the copula correlation, we maximize the likelihood at observed en-

tries. Suppose there are i.i.d. samples xi i.i.d.
∼ EGC(Σ, ford,µ), observed at Oi and

missing atMi for i = 1, . . . , n. The observed likelihood integrates over the latent

space that maps to the observation xi
Oi

, as in Eq. (7.8):

ℓobs(Σ; xi
Oi

) =
1
n

n∑
i=1

∫
zi

[Oi]
∈f−1
Oi

(xi
Oi

)
ϕ(zi

[Oi]; 0,ΣOi,Oi) dzi
[Oi]. (7.8)

The likelihood in the Gaussian copula for ordered variables [103] has the same

form as Eq. (7.8) except that Oi has the same length as [Oi] there. The similarity

has an important implication: the EM algorithm in [103] also works in our case,

after replacing the index in the latent space properly. The idea is that at EM

iteration t+1, we update Σ(t+1) as the corresponding correlation when covariance

is the expected “empirical covariance matrix” of zi. The expectation is over the

distribution of zi conditional on the observation xi
Oi

and previous correlation

estimate Σ(t). Concretely, we follow the update:

Σ(t+1) ← PE

1
n

n∑
i=1

E[zi(zi)⊤|xi
Oi
,Σ(t)]

 , (7.9)

where PE(Σ) returns the correlation matrix corresponding to a covariance matrix

Σ (positive definite). EM algorithm is guaranteed to strictly increase the likeli-

hood in Eq. (7.8) and converges to a staionary point. The main computation is to

compute the expected sample covariance of zi. Dropping the row index, evalu-

ating E[zz⊤|xO,Σ(t)] reduces to evaluate E[z[O]|xO,Σ(t)] and Cov[z[O]|xO,Σ(t)], which

we discuss in Section 7.4.3.

97

However, with categorical variables, there requires one additional step

in the EM iteration to ensure Σ(t+1) satisfies the constraint in Eq. (7.4). To

achieve so, note for z = (z1, . . . , zpcat , zord) ∼ N(0,Σ) and each categorical

variable j, we have z j ∼ N(0,Σ[j],[j]) and Σ−1/2
[j],[j]z

j ∼ N(0, I). Thus for A =

diag(Σ−1/2
[1],[1], . . . ,Σ

−1/2
[pcat],[pcat]

, Iord), we have Az ∼ N(0, AΣA⊤) with AΣA⊤ satisfies the

constraint in Eq. (7.4). This update is a deterministic function of Σ, as shown

below.

Σ← AΣA⊤ where A = diag(Σ−1/2
[1],[1], . . . ,Σ

−1/2
[pcat],[pcat]

, Iord). (7.10)

We now summarize the complete model estimation algorithm in Algorithm 9.

Algorithm 9 Correlation estimation for the extended Gaussian Copula

1: Input: Partial data observation {xi
Oi
}ni=1, estimated marginal f, initial estimate

Σ(0)

2: for t = 0, 1, 2, . . . until convergence do
3: Compute E[zi(zi)⊤|xi

Oi
,Σ(t)] for i = 1, . . . , n.

4: Update Σ(t+1) as in Eq. (7.9).
5: Adjust Σ(t+1) as in Eq. (7.10) with Σ = Σ(t+1).
6: end for
7: Output: Σ̂ = Σ(t+1).

7.4.3 Truncated normal with categorical variables

In this section, we introduce operations on z[O]|xO, normal distribution truncated

into the region f−1
O

(xO) =
∏

j∈O f −1
j (x j). Without observed categorical variables,

each f −1
j (x j) is an interval (trivial single point interval for continuous x j), and

thus f−1
O

(xO) is a Cartesian product of intervals. We refer this distribution as in-

terval truncated Gaussian. For interval truncated Gaussian, accurate sampling

method has been developed in [11] and efficient mean and covariance estima-

tion method has been developed in [103].

98

With observed categorical variables, the truncation region is no longer a

Cartesian product intervals. Fortunately, there exists a matrix Ax (depending

on xO) satisfying A2
x = I, such that Axz[O]|xO is interval truncated Gaussian. Con-

sequently, we can compute:

E[z[O]|xO] = AxE[Axz[O]|xO], Cov[z[O]|xO] = AxCov[Axz[O]|xO]A⊤x . (7.11)

Similarly, to sample zi
i.i.d.
∼ z[O]|xO, we can first sample z̃i

i.i.d.
∼ Axz[O]|xO and then

use zi = Axz̃i.

To see what Ax is, it helps to first see the expression of f −1
j (x j) for categorical

x j. We drop the subscript j and add its dependency on a mean parameter µ here.

By definition in Eq. (7.3),

f −1(x;µ) = {z : z−k + µ−k < (zk + µk)1K−1}, when x = k ∈ {1, . . . ,K}. (7.12)

Define z̃ ∈ RK as z̃−k = zk1K−1 − z−k and z̃k = zk, i.e. z̃ = Akz where Ak = −IK +∑K
i=1 Eik + Ekk (matrix Ei j has 1 at (i, j)-th entry and 0 elsewhere). Similarly define

µ̃ = Akµ, we can rewrite Eq. (7.12) to {z̃ + µ̃ > 0}, which is a Cartesian product of

intervals. We can find matrix A j as shown above for every categorical variable

x j. Now let Ax be lock-diagonal, diag(A1, . . . , Apcat , Ipord), then Axz[O] is truncated

into a Cartesian production of intervals and Ax satisfies that A2
x = I.

99

CHAPTER 8

SOFTWARE

In this chapter, we demonstrate how to use our software through multiple ex-

amples. This chapter is based on [104].

8.1 Introduction

Many software implementations are available for missing data imputation. The

options are most plentiful in R1. In contrast, most advanced Python imputation

packages re-implement earlier R packages. We implemented all methodology

presented earlier in both Python as the gcimpute2 package and R as the gcim-

puteR3 package. Their functionality include imputation on continuous, binary,

ordinal, count, and truncated mixed datasets, imputation confidence intervals,

multiple imputation, large-scale imputation using the low rank Gaussian copula

model, online imputation and online change point detection. Here we demon-

strate how to use the Python version gcimpute. The usage for gcimputeR is

similar.

Related software

There are also a few copula based imputation packages in R. sbgcop [43] uses

the same model as our software but provides a Bayesian implementation using

1See https://cran.r-project.org/web/views/MissingData.html, https://
rmisstastic.netlify.app/rpkg/.

2https://github.com/udellgroup/gcimpute
3https://github.com/udellgroup/gcimputeR

100

https://cran.r-project.org/web/views/MissingData.html
https://rmisstastic.netlify.app/rpkg/
https://rmisstastic.netlify.app/rpkg/
https://github.com/udellgroup/gcimpute
https://github.com/udellgroup/gcimputeR

a MCMC algorithm. As shown in Section 2.5, our software achieves the same

level of accuracy as sbgcop much more quickly [103]. mdgc [22] amends the

algorithm in Chapter 2 by using a higher quality approximation for certain steps

in the computation, improving model accuracy but significantly increasing the

runtime when the number of variables is large (n > 100). CoImp [57] uses only

complete cases to fit the copula model and is unstable when most instances have

missing values. In contrast, our software can robustly fit the model even when

every instance contains missing values. Moreover, our software are the first

Gaussian copula package to fit extremely large datasets and streaming datasets.

8.2 Software usage

Our examples rely on some basic Python modules for data manipulation and

plotting:

>>> import numpy as np

>>> import pandas as pd

>>> import time

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> from tabulate import tabulate

101

8.2.1 Basic usage

To demonstrate the basis usage of gcimpute, we use demographic data from

the 2014 General Social Survey (GSS) data: we consider the variables age

(AGE), highest degree (DEGREE), income (RINCOME), subjective class identifi-

cation (CLASS), satisfaction with the work (SATJOB), weeks worked last year

(WEEKSWRK), general happiness (HAPPY), and condition of health (HEALTH). All

variables are ordinal variables encoded as integers, with varying number of or-

dinal categories. The integers could represent numbers, such as 0, 1, · · · , 52 for

WEEKSWRK, or ordered categories, such as 1 (“Very happy”), 2 (“Pretty happy”),

3 (“Not too happy”) for the question “how would you say things are these days”

(HAPPY). Many missing entries appear due to answers like “Don’t know”, “No

answer”, “Not applicable”, etc. Variable histograms are plotted in Fig. 8.1 using

the following code:

>>> from gcimpute.helper_data import load_GSS

>>> data_gss = load_GSS()

>>> fig, axes = plt.subplots(2, 4, figsize=(12,6))

>>> for i,col in enumerate(data_gss):

... if col in [’AGE’, ’WEEKSWRK’]:

... to_plot=data_gss[col].dropna()

... to_plot.hist(ax=axes[i//4, i%4], bins=60)

... else:

... to_plot=data_gss[col].dropna()

... to_plot=to_plot.value_counts().sort_index()

... to_plot.plot(kind=’bar’, ax=axes[i//4, i%4])

... _t = f’{col}, {data_gss[col].isna().mean():.2f} missing’

102

20 40 60 80
0

20

40

60

80

100

AGE, 0.00 missing

0 1 2 3 4

0

200

400

600

800

1000

1200

DEGREE, 0.00 missing

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

11
.0

12
.0

0

200

400

600

800

RINCOME, 0.40 missing

1.
0

2.
0

3.
0

4.
0

0

200

400

600

800

1000

1200
CLASS, 0.01 missing

1.
0

2.
0

3.
0

4.
0

0

200

400

600

800

1000
SATJOB, 0.25 missing

0 20 40
0

200

400

600

800

1000

WEEKSWRK, 0.01 missing

1.
0

2.
0

3.
0

0

250

500

750

1000

1250

HAPPY, 0.00 missing

1.
0

2.
0

3.
0

4.
0

0

200

400

600

800
HEALTH, 0.33 missing

Figure 8.1: Histogram plots for GSS variables. There are 2538 samples in total.

... axes[i//4, i%4].set_title(_t)

>>> plt.tight_layout()

We mask 10% of the observed entries uniformly at random as a test set to

evaluate our imputations.

>>> from gcimpute.helper_mask import mask_MCAR

>>> gss_masked = mask_MCAR(X=data_gss, mask_fraction=.1)

The Python package has an API consistent with the sklearn.impute mod-

ule [12]. To impute the missing entries in an incomplete dataset, we sim-

ply create a model and call fit_transform(). The default choice uses

training_mode=‘standard’, corresponding to the algorithm in Chapter 2.

>>> from gcimpute.gaussian_copula import GaussianCopula

>>> model = GaussianCopula()

>>> Ximp = model.fit_transform(X=gss_masked)

103

To compare imputation performance across variables with different scales, we

use the average SMAE over all variables. As shown below, the Gaussian copula

imputation improves over median imputation by 10.9%.

>>> from gcimpute.helper_evaluation import get_smae

>>> e = get_smae(x_imp=Ximp, x_true=data_gss, x_obs=gss_masked)

>>> print(f’SMAE average over all variables: {e.mean():.3f}’)

SMAE average over all variables: 0.891

We can also extract the copula correlation estimates to see which variables are

correlated, as in Fig. 8.2. Interestingly, DEGREE and CLASS have the largest

positive correlation 0.39, while WEEKSWRK and AGE have the largest negative

correlation −0.37.

>>> copula_corr_est = model.get_params()[’copula_corr’]

>>> mask = np.zeros_like(copula_corr_est)

>>> mask[np.triu_indices_from(mask)] = True

>>> names = data_gss.columns

>>> sns.heatmap(np.round(copula_corr_est,2),

xticklabels=names, yticklabels=names,

annot=True, mask=mask, square=True, cmap=’vlag’)

Determining the variable types

The choice of variable type can have a strong effect on inference and impu-

tation. gcimpute defines five variable types: ‘continuous’, ‘ordinal’,

104

AG
E

DE
GR

EE

RI
NC

OM
E

CL
AS

S

SA
TJ

OB

W
EE

KS
W

RK

HA
PP

Y

HE
AL

TH

AGE

DEGREE

RINCOME

CLASS

SATJOB

WEEKSWRK

HAPPY

HEALTH

0.02

0.23 0.36

0.18 0.39 0.33

0.2 0.14 0.17 0.17

-0.37 0.22 0.26 0.08 0.05

-0.01 0.18 0.13 0.18 0.3 0.12

-0.14 0.34 0.17 0.25 0.17 0.34 0.33 0.3

0.2

0.1

0.0

0.1

0.2

0.3

Figure 8.2: The estimated latent copula correlation among GSS variables.

‘lower_truncated’, ‘upper_truncated’ and ‘twosided_truncated’.

gcimpute provides good default guesses of data types, which we used in the

previous call. After fitting the model, we can query the model to ask which

variable type was chosen as shown below. Only AGE is treated as continuous;

all other variables are treated as ordinal. No variable is treated as truncated.

>>> for k,v in model.get_vartypes(feature_names=names).items():

>>> print(f’{k}: {v}’)

continuous: [’AGE’]

ordinal: [’DEGREE’, ’RINCOME’, ’CLASS’, ’SATJOB’,

’WEEKSWRK’, ’HAPPY’, ’HEALTH’]

lower_truncated: []

upper_truncated: []

105

twosided_truncated: []

We can specify the type of each variable in model.fit_transform() directly.

Otherwise, the default setting works well. It guesses the variable type based on

the frequency of observed unique values. A variable is treated as continuous if

its mode’s frequency is less than 0.1. A variable is treated as lower/upper/two

sided truncated if its minimum’s/maximum’s/minimum’s and maximum’s fre-

quency is more than 0.1 and the distribution, excluding these values, is contin-

uous by the previous rule. All other variables are ordinal. The default thresh-

old value 0.1 works well in general, but can be changed using the parameter

min_ord_ratio in the model call GaussianCopula(). For example, let us

look at the frequency of the min, max, and mode for each GSS variable.

>>> def key_freq(col):

... freq = col.value_counts(normalize=True)

... key_freq = {’mode_freq’:freq.max()}

... _min, _max = col.min(), col.max()

... key_freq[’min_freq’] = freq[_min]

... key_freq[’max_freq’] = freq[_max]

... f = freq.drop(index = [_min, _max])

... key_freq[’mode_freq_nominmax’] = f.max()/f.sum()

... return pd.Series(key_freq).round(2)

>>> table = data_gss.apply(lambda x: key_freq(x.dropna())).T

>>> print(tabulate(table, headers=’keys’, tablefmt=’psql’))

+----------+--------+-------+-------+-----------------+

| | mode | min | max | mode_nominmax |

106

|----------+--------+-------+-------+-----------------|

| AGE | 0.02 | 0 | 0.01 | 0.02 |

| DEGREE | 0.5 | 0.13 | 0.11 | 0.66 |

| RINCOME | 0.62 | 0.02 | 0.62 | 0.26 |

| CLASS | 0.46 | 0.09 | 0.03 | 0.52 |

| SATJOB | 0.5 | 0.5 | 0.05 | 0.81 |

| WEEKSWRK | 0.44 | 0.31 | 0.44 | 0.13 |

| HAPPY | 0.55 | 0.31 | 0.13 | 1 |

| HEALTH | 0.47 | 0.26 | 0.07 | 0.7 |

+----------+--------+-------+-------+-----------------+

Only AGE has mode frequency below 0.1 and thus is treated as continuous. All

other variables have strong concentration on a single value, even after removing

the min and max, so these are treated as ordinal. WEEKSWRK is an interesting

example. It has 53 levels, yet 75% of the population works either 0 or 52 weeks

per year: thus it is not treated as a continuous variable. Interestingly, if we insist

that WEEKWRK be treated as continuous, the algorithm diverges! We discuss this

phenomenon in an online vignette4.

Monitoring the algorithm fitting

gcimpute considers the model to have converged when the model parameters

no longer change rapidly: It terminates when ||Σt+1 − Σt||F/||Σ
t||F falls below the

specified tol, where Σt is the model parameter estimate at the t-th iteration and

||·||F denotes the Frobenius norm. In practice, the default value tol=0.01works

4https://github.com/udellgroup/gcimpute/blob/master/Examples/
Trouble_shooting.ipynb

107

https://github.com/udellgroup/gcimpute/blob/master/Examples/Trouble_shooting.ipynb
https://github.com/udellgroup/gcimpute/blob/master/Examples/Trouble_shooting.ipynb

well and the algorithm converges in less than 30 iterations in most cases.

Tracking the objective value may also be useful. The objective value is

the marginal likelihood at the observed locations, averaged over all instances.

When all variables are continuous, gcimpute computes the exact likelihood. In

other cases, gcimpute computes an approximation to the likelihood. The ap-

proximation behaves well in most cases including those with all ordinal vari-

ables: it monotonically increases during the fitting process and finally con-

verges.

To monitor the parameter update and the objective during fitting, simply set

verbose=1 in the model call.

>>> model = GaussianCopula(verbose=1)

>>> Ximp = model.fit_transform(X=gss_masked)

Iter 1: copula parameter change 0.1168, likelihood -9.6913

Iter 2: copula parameter change 0.0644, likelihood -9.5869

Iter 3: copula parameter change 0.0366, likelihood -9.5278

Iter 4: copula parameter change 0.0220, likelihood -9.4942

Iter 5: copula parameter change 0.0140, likelihood -9.4744

Iter 6: copula parameter change 0.0093, likelihood -9.4623

Convergence achieved at Iter 6

Using a tolerance tol that is too small can require many more iterations and

can cause overfitting. Hence users may wish to tune tol for a specific dataset

for best performance using fit_transform_evaluate(). This function

runs the EM algorithm for specified n_iter iterations and evaluates the im-

108

puted dataset using the provided eval_func at each iteration. The function

eval_func should take an imputed dataset as input and output the desired

evaluation results. We can design eval_func to evaluate the imputation ac-

curacy or the prediction accuracy of a supervised learning pipeline with the

imputed dataset as feature matrix. For example, to evaluate the mean SMAE of

the GSS dataset for up to 15 iterations, we can run the following code:

>>> m = GaussianCopula(verbose=1)

>>> def get_err(x):

>>> e = get_smae(x, x_true=data_gss, x_obs=gss_masked)

>>> return e.mean()

>>> r = m.fit_transform_evaluate(X=gss_masked,

>>> eval_func=get_err,

>>> num_iter=15)

>>> plt.plot(list(range(1, 16, 1)), r[’evaluation’])

>>> plt.title(’Imputation error versus run iterations’)

>>> plt.xlabel("Run iterations")

>>> plt.ylabel("SMAE")

Iter 1: copula parameter change 0.1168, likelihood -9.6913

Iter 2: copula parameter change 0.0644, likelihood -9.5869

Iter 3: copula parameter change 0.0366, likelihood -9.5278

Iter 4: copula parameter change 0.0220, likelihood -9.4942

Iter 5: copula parameter change 0.0140, likelihood -9.4744

Iter 6: copula parameter change 0.0093, likelihood -9.4623

Iter 7: copula parameter change 0.0063, likelihood -9.4545

Iter 8: copula parameter change 0.0044, likelihood -9.4494

109

2 4 6 8 10 12 14
Run iterations

0.885

0.890

0.895

0.900

0.905

0.910

0.915

SM
AE

Imputation error versus run iterations

Figure 8.3: The imputation error among GSS variables is plotted w.r.t. the num-
ber of iterations run in gcimpute. Satisfactory results emerge after four itera-
tions.

Iter 9: copula parameter change 0.0032, likelihood -9.4460

Iter 10: copula parameter change 0.0023, likelihood -9.4437

Iter 11: copula parameter change 0.0017, likelihood -9.4421

Iter 12: copula parameter change 0.0012, likelihood -9.4409

Iter 13: copula parameter change 0.0009, likelihood -9.4401

Iter 14: copula parameter change 0.0007, likelihood -9.4396

Iter 15: copula parameter change 0.0005, likelihood -9.4392

Shown in Fig. 8.3, the imputation error fluctuates in a small range from 0.885

to 0.890 after four iterations. The default parameter setting stops at iteration 6.

110

8.2.2 Acceleration for large datasets

In this section, we will see how to speed up gcimpute . To use parallelism with m

cores, we simply set n_jobs=m in the model call GaussianCopula(). To use

mini-batching training, we set training_mode as ‘minibatch-offline’

also in the model call GaussianCopula(). The low rank Gaussian copula

is invoked using a different model call LowRankGaussianCopula(rank=k)

with desired rank k. Mini-batch training for the low rank Gaussian copula is

more challenging and remains for future work, as the low rank update is non-

linear. Nevertheless, for large n and large p, the parallel low rank Gaussian

copula already converges quite rapidly.

Accelerating datasets with many samples: mini-batch training

Mini-batch training requires choosing a decaying step size {γt} in Eq. (5.6), a

batch size and a maximum number of iterations. The default setting can be

simply invoked by calling

m = GaussianCopula(training_mode=‘minibatch-offline’)

or explicitly as below:

m = GaussianCopula(training_mode=’minibatch-offline’,

stepsize_func = lambda t,c=5:c/(c+t),

batch_size = 100,

num_pass = 2

)

111

The step size sequence γt must satisfy γt ∈ (0, 1) for all t and
∑∞

t=1 γ
2
t <

∑∞
t=1 γt = ∞.

By default, we recommend using γt = c/(c + t) with c > 0. We find it generally

suffices to tune c in the range (0, 10). The default setting c = 5 works well in

many of our experiments.

Mini-batch training requires a batch size s ≥ p to avoid inverting a singular

matrix [105]. In practice, it is easy to select s ≥ p, since problems with large p

should use LowRankGaussianCopula() instead.

The maximum number of iterations matters more for mini-batch methods,

because the stochastic fluctuation over mini-batches makes it hard to decide

convergence based on the parameter update. Instead of specifying an exact

maximum number of iterations, it may be more convenient to select a de-

sired number of complete passes through the data (epochs), i.e. max_iter=⌈
n
s

⌉
×num_pass with s as the mini-batch size. Often using num_pass= 2 (the

default setting) or 3 gives satisfying results.

We now run mini-batch training with the defaults on the GSS dataset:

>>> t1=time.time()

>>> m = GaussianCopula(training_mode=’minibatch-offline’)

>>> Ximp = m.fit_transform(X=gss_masked)

>>> t2=time.time()

>>> print(f’Runtime: {t2-t1:.2f} seconds’)

>>> e = get_smae(Ximp, x_true=data_gss, x_obs=gss_masked)

>>> print(f’Imputation error: {e.mean():.3f}’)

Runtime: 15.27 seconds

Imputation error: 0.886

112

Let us also re-run and record the runtime of the standard training mode:

>>> t1=time.time()

>>> _ = GaussianCopula().fit_transform(X=gss_masked)

>>> t2=time.time()

>>> print(f’Runtime: {t2-t1:.2f} seconds’)

Runtime: 39.47 seconds

Mini-batch training not only reduces runtime by 61% but also improves the im-

putation error (from 0.891 to 0.886)!

Accelerating datasets with many variables: low rank structure

The low rank Gaussian copula (LRGC) model accelerates convergence by de-

creasing the number of model parameters. Here we showcase its performance

on a subset of the MovieLens1M dataset [40]: the 400 movies with the most rat-

ings and users who rates at least 150 of these movies in the scale of {1, 2, 3, 4, 5}.

That yields a dataset consisting of 914 users and 400 movies with 53.3% of rat-

ings observed. We further mask 10% entries for evaluation.

>>> gcimpute.helper_data import load_movielens1m

>>> d_movie = load_movielens1m(num=400, min_obs=150)

>>> dm_masked = mask_MCAR(X=d_movie, mask_fraction=0.1)

We run GaussianCopula() and LowRankGaussianCopula(rank=10).

Here our goal is not to choose the optimal rank, but rather show the runtime

comparison between two models.

113

>>> from gcimpute.low_rank_gaussian_copula

import LowRankGaussianCopula

>>> a = time.time()

>>> model_movie_lrgc = LowRankGaussianCopula(rank=10)

>>> imp_lrgc = model_movie_lrgc.fit_transform(X=dm_masked)

>>> print(f’LRGC runtime {(time.time()-a)/60:.2f} mins.’)

>>> a = time.time()

>>> model_movie_gc = GaussianCopula()

>>> imp_gc = model_movie_gc.fit_transform(X=dm_masked)

>>> print(f’GC runtime {(time.time()-a)/60:.2f} mins.’)

LRGC runtime 7.86 mins.

GC runtime 11.66 mins.

Here we already see that LRGC already reduces the runtime by 34% compared

to the standard Gaussian copula, although the number of variables p = 400 is

not particularly large. When the number of variables is much larger, the acceler-

ation is also more significant. Moreover, LRGC improves the imputation error

from 0.616 to 0.583, as shown below.

>>> from gcimpute.helper_evaluation import get_mae

>>> e_gc=get_mae(imp_gc, x_true=d_movie, x_obs=dm_masked)

>>> e_lrgc=get_mae(imp_lrgc, x_true=d_movie, x_obs=dm_masked)

>>> print(f’LRGC imputation MAE: {e_lrgc:.3f}’)

>>> print(f’GC imputation MAE: {e_gc:.3f}’)

LRGC imputation MAE: 0.583

GC imputation MAE: 0.616

114

8.2.3 Imputation for streaming datasets

gcimpute’s ‘minibatch-online’ training mode performs streaming impu-

tation: as new samples arrive, it imputes the missing data immediately and then

updates the model parameters. We showcase its performance on eight daily

recorded economic time series variables from federal reserve bank of St. Louis

(FRED), consisting of 3109 days from 2008-06-03 to 2020-12-31. The selected

eight variables are diverse and among the most popular economic variables in

FRED: gold volatility index, stock volatility index, bond spread, dollar index,

inflation rate, interest rate, crude oil price, and US dollar to Euro rate, shown in

Fig. 8.4.

>>> from gcimpute.helper_data import load_FRED

>>> fred = load_FRED()

>>> fred.plot(subplots = True, layout = (2,4),

... figsize = (16,6), legend = False,

... title = fred_data.columns.to_list()

...)

Here we consider a scenario in which some variables are observed as soon as

they are generated, while others are observed after a lag of one day. The goal is

to predict the unobserved variables each day. We use stock StockVolatility

and CrudeOilPrice as two unobserved variables. Each day, using a fitted

Gaussian copula model, we predict their values based on both their historical

values (through the marginal) and the six other observed variables at that day

(through the copula correlation). After we make our prediction, the actual val-

ues are revealed and used to update the Gaussian copula model. gcimpute con-

115

0

50

100

150
CrudeOilPrice

20

40

60

80
StockVolatility

20

40

60

GoldVolatility

5

10

15

20

BondSpread

2008
2010

2012
2014

2016
2018

2020

90

100

110

120

DollarIndex

2008
2010

2012
2014

2016
2018

2020
0.0

0.5

1.0

1.5

2.0

2.5

InflationRate

2008
2010

2012
2014

2016
2018

2020
0

1

2

3
InterestRate

2008
2010

2012
2014

2016
2018

2020

1.2

1.4

1.6
USDtoEuroRate

Figure 8.4: Values of eight selected FRED economic variables from 2008-06-03
to 2020-12-31 are plotted.

veniently supports this task. Let us first create a Gaussian copula model to im-

pute streaming datasets (training_mode=‘minibatch-online’), shown

as below.

>>> m = GaussianCopula(training_mode=’minibatch-online’,

... window_size=10,

... const_stepsize=0.1,

... batch_size=10,

... decay=0.01

...)

Three hyperparameters control the learning rate of the model: window_size

controls the number of recent observations used for marginal estimation;

const_stepsize controls the size of the copula correlation update; and

batch_size is the frequency of the copula correlation update. In contrast,

decay only controls the imputation and does not influence the model update

(decay rate d defeind in Section 5.2.1). Smaller values of decay put less weight

on old observations, i.e., forget stale data faster. In economic time series, yes-

116

terday’s observation often predicts today’s value well. We use a small value

decay=.01, so that the imputation depends most strong on yesterday’s ob-

servation, but interpolates all values in the window. These parameters can be

tuned for best performance.

Next, to conduct the experiment described above, we prepare two data ma-

trices with one row for each temporal observation: X for imputing missing en-

tries and X_true for updating the model. We use first 25 rows to initialize the

model.

>>> fred_m = fred.assign(StockVolatility=np.nan,

... CrudeOilPrice=np.nan)

>>> Ximp = m.fit_transform(X=fred_m, X_true=fred, n_train=25)

More concretely, a Gaussian copula model receives the t-th row of X, imputes

its missing entries, and then is asked to update parameters of the model us-

ing the t-th row of X_true. X_true must agree with X at all observed en-

tries in X, but may reveal additional entries that are missing in X. By default,

X_true=None, indicating no additional entries beyond X are available. In

this example, two columns of fred_masked are missing: StockVolatility

and CrudeOilPrice. All other columns fully observed. fred_data has all

columns fully observed.

We now evaluate the imputation performance and compare against a simple

but powerful alternative, yesterday’s observation. The predicted series of both

methods are almost visually indistinguishable from the true values in Fig. 8.4,

but the Gaussian copula predictions perform better on average, with MSE.

117

>>> n_train = 25

>>> names = [’CrudeOilPrice’, ’StockVolatility’]

>>> for i, col in enumerate(names):

... _true = fred_data[col][n_train:].to_numpy()

... _yesterday = fred_data[col][n_train-1:-1].to_numpy()

... e_yes = np.power(_yesterday-_true, 2).mean()

... e_GC = np.power(Ximp[n_train:,i]-_true, 2).mean()

... print(f’For {col}:’)

... print(f’Gaussian Copula Pred MSE: {e_yes:.3f}’)

... print(f’Yesterday Value Pred MSE: {e_GC:.3f}’)

For CrudeOilPrice:

Gaussian Copula Pred MSE: 3.672

Yesterday Value Pred MSE: 4.313

For StockVolatility:

Gaussian Copula Pred MSE: 3.998

Yesterday Value Pred MSE: 4.368

8.2.4 Imputation uncertainty

So far we have seen several methods to impute missing data. gcimpute also

provides functionality to quantify the uncertainty of the imputations: multiple

imputation, confidence interval for a single imputation, and relative reliability

for a single imputation. We present the first two notions here, since they are

widely used. The third, relative reliability, aims to rank the imputation quality

among all imputed entries Section 4.2. It is well suited for the top-k recommen-

118

dation task in collaborative filtering.

Multiple imputation

Multiple imputation creates several imputed copies of the original dataset, each

having potentially different imputed values. The uncertainty due to imputa-

tions can be propagated into subsequent analyses by analyzing each imputed

dataset. Multiple imputation is commonly used in supervised learning when

features may have missing entries: a researcher creates multiple imputed fea-

ture datasets, then trains a model with each imputed training feature dataset

and predicts with each imputed test feature vector. Finally, they pool all pre-

dictions into a single prediction, for example, using the mean or majority vote.

An ensemble model like this often outperforms a single model trained from a

single imputation.

We show to use multiple imputation in gcimpute on a regression task from

UCI datasets, the white wine quality dataset [24]. This dataset has 11 continuous

features and a rating target for 4898 samples.

>>> gcimpute.helper_data import load_whitewine

>>> df = load_whitewine()

We now randomly mask 30% of entries and fit a Gaussian copula model to the

masked dataset.

>>> X = df.to_numpy()[:,:-1]

>>> X_masked = mask_MCAR(X_wine, mask_fraction=0.3)

119

>>> m = GaussianCopula()

>>> Ximp = m.fit_transform(X=X_masked)

Now we use the first 4000 instances as a training dataset and the remaining

898 instances as test dataset. Since the goal is to show how to use multiple

imputation, we use simple linear model as the prediction model. Now, let us

first examine the MSE of the linear model fitted on the complete feature dataset.

>>> from sklearn.metrics import mean_squared_error as MSE

>>> from sklearn.linear_model import LinearRegression as LR

>>> X_train,X_test = X[:4000],X[4000:]

>>> y_train,y_test = df[’quality’][:4000],df[’quality’][4000:]

>>> y_pred = LR().fit(X=X_train, y=y_train).predict(X=X_test)

>>> np.round(MSE(y_test, y_pred),4)

0.5121

Now let us examine the MSE of the linear model fitted on the single imputed

dataset.

>>> Ximp_train, Ximp_test = Ximp[:4000], Ximp[4000:]

>>> m_LR = LR().fit(X=Ximp_train, y=y_train)

>>> y_pred = m_LR.predict(X=Ximp_test)

>>> np.round(MSE(y_test, y_pred),4)

0.5295

120

Not surprisingly, replacing 30% feature values with the corresponding imputa-

tion does hurt the prediction accuracy. Now let us draw 5 imputed datasets,

train a linear model and get prediction for each imputed dataset, and derive the

final prediction as the average across 5 different prediction. As shown below,

the mean-pooled prediction improves the results from single imputation and

performs very close to the results using the complete dataset.

>>> Ximp_mul = m.sample_imputation(X=X_masked, num=5)

>>> y_pred_mul = []

>>> for i in range(5):

... _Ximp = Ximp_mul[...,i]

... _Ximp_train, _Ximp_test = _Ximp[:4000], _Ximp[4000:]

... _m_LR = LR().fit(X=_Ximp_train, y=y_train)

... _y_pred = m_LR.predict(X=_Ximp_test)

... y_pred_mul.append(_y_pred)

>>> y_pred_mul = np.array(y_pred_mul).mean(axis=0)

>>> np.round(MSE(y_test, y_pred_mul), 4)

0.5152

Imputation confidence intervals

Confidence intervals (CI) are another important measure of uncertainty. gcim-

pute can return a CI for each imputed value: for example, a 95% CI should

contain the true missing data with probability 95%. In general, these CI are

not symmetric around the imputed value due to the nonlinear transformation f.

121

We will continue to use the white wine dataset to illustration. After fitting the

Gaussian copula model, we can obtain the imputation CI as shown below.

>>> ct = m.get_imputed_confidence_interval()

>>> upper, lower = ct[’upper’], ct[’lower’]

By default, the method get_imputed_confidence_interval() extracts

the imputation CI of the data used to fit the Gaussian copula model, with signif-

icance level alpha=0.05. The empirical coverage of the returned CI is 0.943,

as shown below. Hence we see the constructed CI are well calibrated on this

dataset.

>>> missing = np.isnan(X_masked)

>>> X_m = X[missing]

>>> cover = (lower[missing]<X_m) & (upper[missing]>X_m)

>>> np.round(cover.mean(),3)

0.943

The default setting uses an analytic expression to obtain the CI. As stated in

Section 4.2, when some variables are not continuous, a safer approach builds CI

using empirical quantiles computed from multiple imputed values. Let us now

construct the quantile CI and compare them with the analytical counterparts.

As shown below, the quantile CI has almost the same empirical coverage rate as

the analytical CI, validating that the CI are well calibrated.

>>> ct_q = m.get_imputed_confidence_interval(type=’quantile’)

>>> upper_q, lower_q = ct_q[’upper’], ct_q[’lower’]

122

>>> cover_q = (lower_q[missing]<X_m) & (upper_q[missing]>X_m)

>>> np.round(cover_q.mean(),3)

0.942

8.3 Discussion

Although this chapter focuses on missing data imputation, gcimpute can also be

used to fit a Gaussian copula model to complete mixed datasets. The resulting

latent correlations may be useful to understand multi-view data collected on

the same subjects from different sources. As far as we know, no other software

supports Gaussian copula estimation for mixed continuous, binary, ordinal and

truncated variables. Fan et al. [30] only supports continuous and binary mixed

data; Feng and Ning [34] supports continuous, binary and ordinal mixed data;

Yoon et al. [99] supports continuous, binary and zero-inflated (a special case of

truncated) mixed data.

One major area for future research is the appropriate treatment of nominal

values. gcimpute currently encodes nominal variables using a one-hot encod-

ing, however, this encoding is not self-consistent for the copula model since our

estimation procedure ignores the one-hot constraint. We advise users to model

their features directly as ordinal or binary, if possible.

123

APPENDIX A

APPENDIX OF CHAPTER 2

A.1 Truncated normal moments approximations

Denote the observation {xO,Σ} i.e. {zC = f−1
C

(xC), zD ∈ f−1
D

(xD),Σ} as {∗}. Since

the task is to compute the marginal mean and variance of a multivariate trun-

cated normal, we suppose M = ∅ here without loss of generality. For each

j ∈ D, we use the law of total expectation by conditioning on zD− j first. Given

{∗, zD− j}, z j is univariate normal with mean µ̃ j = Σ j,− jΣ
−1
− j,− jz− j and variance

σ̃2
j = 1−Σ j,− jΣ

−1
− j,− jΣ− j, j, truncated to the region f −1

j (x j), where the index − j means

all dimensions but j, i.e., [p]\ j. The region f −1
j (x j) is an interval: f −1

j (x j) = (a j, b j].

Here are three cases: (1) a j, b j ∈ R; (2) a j ∈ R, b j = ∞; (3) a j = −∞, b j ∈ R. The

computation for all cases are similar. We take the first case as an example. First

we introduce a lemma describing the first and second moments of a truncated

univariate normal.

Lemma 8. Suppose a univariate random variable z ∼ N(µ, σ2). For constants

a < b, let α = (a − µ)/σ and β = (b − µ)/σ. Then the mean and variance of z

truncated to the interval (a, b] are:

E(z|a < z ≤ b) = µ +
ϕ(α) − ϕ(β)
Φ(β) − Φ(α)

· σ

Var(z|a < z ≤ b) =
1 + αϕ(α) − βϕ(β)

Φ(β) − Φ(α)
−

(
ϕ(α) − ϕ(β)
Φ(β) − Φ(α)

)2σ2.

Plugging µ = µ̃ j, σ
2 = σ̃2

j and (a, b] = f −1
j (x j) into the above mean and vari-

124

ance formulas, we obtain the expression of f j(zD− j; x j,Σ) defined in Section 2.4.3,

and the univariate truncated normal variance Var[z j|zD− j, xO,Σ] =: h j(zD− j; x j,Σ),

a nonlinear function R|D|−1 → R, parameterized by x j and Σ. Write down the

formula for marginal variance conditional on observation:

Var[z j|∗] = E
[
Var[z j|zD− j, ∗]

∣∣∣∗] + Var
[
E[z j|zD− j, ∗]

∣∣∣∗]
= E

[
h j(zD− j; x j,Σ)

∣∣∣∗] + Var
[
f j(zD− j; x j,Σ)

∣∣∣∗]

We approximate the first term as h j(E[zD− j|∗]; x j,Σ). In [39], the second term,

is approximated as Var[µ̃ j|∗] based on E
[
f 2

j (zD− j; x j,Σ)
∣∣∣∗] ≈ f 2

j (E[zD− j|∗]; x j,Σ).

However, we found in practice simply dropping the second term performs bet-

ter.

In summary, given an estimate ẑ(t)
D
≈ E[zD|xO,Σ(t)] and Σ(t+1), for j ∈ D, we

update E[z j|xO,Σ(t+1)] ≈ f j(ẑ(t)
D− j; x j,Σ

(t+1)) and Var[z j|xO,Σ(t+1)] ≈ h j(ẑ(t)
D− j; x j,Σ

(t+1)).

In other words, we update the conditional mean and variance of z j as the uni-

variate truncated normal mean and variance with all other observed ordinal

dimensions equal to their mean from last iteration, i.e. zD− j = ẑ(t)
D− j.

A.2 Computational details

Given E[zO|∗],E[zM|∗] and Cov[zO|∗], it suffices to compute E[zMz⊤
O
|∗] and

E[zMz⊤
M
|∗] for Cov[zM, zO|∗] and Cov[zM|∗]. Using the law of total expectation,

125

we have:

E[zMz⊤
O
|∗] = E

[
E[zMz⊤

O
|zO, ∗]

∣∣∣∣∗] = E
[
E[zM|zO, ∗] · z⊤O

∣∣∣∣∗] = E
[
ΣM,OΣ

−1
O,OzO · z⊤O

∣∣∣∣∗]
= ΣM,OΣ

−1
O,OE[zOz⊤

O
|∗].

E[zMz⊤
M
|∗] = E

[
E[zMz⊤

M
|zO, ∗]

∣∣∣∣∗]
= E

[
Cov[zM|zO, ∗]

∣∣∣∣∗] + E
[
E[zM|zO, ∗] · E[z⊤

M
|zO, ∗]

∣∣∣∣∗]
= ΣM,M − ΣM,OΣ

−1
O,OΣO,M + ΣM,OΣ

−1
O,OE[zO|∗]E[z⊤

O
|∗]Σ−1

O,OΣO,M.

A.3 Experimental details

Implementation details For softImpute, we first center the rows and

columns, then select the penalization parameter in the path from 45 (rank 12)

to 6 (rank 207) with 50 points. For GLRM, we use quadratic regularization on

X factor and ordinal regularization on Y factor. The model is fitted with SVD

initialization and offest term. After a small grid search, we select the quadratic

regularization parameter as nobs×1.2×10−4 where nobs is the number of observed

entries. Then the rank is selected through an exhaustive search. For xPCA and

imputeFAMD, the rank is selected through an exhaustive search.

Results of sbgcop on real datasets For GSS data, Copula-EM takes 24s,

while sbgcop with 1000 iterations takes 87s, with imputation error: CALSS,

0.992(0.13); LIFE, 0.924(0.7); HEALTH, 1.132(0.15); HAPPY, 1.231(0.11); INCOME,

0.931(0.03).

126

For movielens data, Copula-EM takes 9 mins, while sbgcop with 200

iterations takes 33 mins, with imputation error: MAE, 0.752(0.004); RMSE,

1.030(0.005).

For CAL500exp data, Copula-EM takes 80s, while sbgcop with 500 iter-

ations takes 290s, with imputation error: 1.301(0.019) for 40% missing ratio;

1.328(0.015) for 50% missing ratio; 1.379(0.016) for 60% missing ratio.

For four small datasets used in Section 2.5.5, the time sbgcop with 1000 iter-

ations takes is 2 times to 9 times (varying over datasets) of the time Copula-EM

takes. The corresponding imputation error is: ESL label 0.466(0.04), feature

0.649(0.02); LEV label 0.849(0.03), feature 0.936(0.01); GBSG ordinal 0.992(0.03),

continuous 0.953(0.02); TIPS ordinal 0.984(0.06), continuous 0.768(0.05).

Datasets description for Section 2.5.5

ESL This dataset contains profiles of applicants for certain jobs. The recruiting

company, based upon psychometric test results and interviews with the

candidates, determined the values of the input attributes. The output is

an overall score corresponding to the degree of fitness of the candidate.

LEV This dataset contains lecturer evaluations. Students evaluate their lectur-

ers according to four attributes such as oral skills and contribution to their

professional/general knowledge. The output is an overall score of the lec-

turer’s performance.

GBSG This dataset contains the information of women with breast cancer con-

cerning the status of the tumours and the hormonal system of the patient.

TIPS This dataset concerns the tips given to a waiter in a restaurant collected

127

from customers. Recording variables contains the price of the meal, the tip

amount and the conditions of the restaurant meal (number of guests, time

of data, etc.).

A.4 Proof of Lemmas

Proof of Lemma 1

Proof. For any j ∈ [p], x j
d
= f j(z j) if and only if (iff) x j and f j(z j) have the same

CDF. For each j ∈ [p], since f −1
j exists for any strictly monotone f j, we can calcu-

late the CDF of f j(z j):

F f j(z j)(t) = P(f j(z j) ≤ t) = P(z j ≤ f −1
j (t)) = Φ(f −1

j (t)).

Then x j
d
= f j(z j) iff Φ ◦ f −1

j = F j, equivalently, f j = F−1
j ◦ Φ. □

Proof of Lemma 2

Proof. It suffices to show for monotone function f , x d
= f (z) iff f (z) = cutoff(z; S)

with S = {sl = F−1
z

(∑l
t=1 pt

)
: l ∈ [k − 1]}. Notice x d

= f (z) iff the range of f (z) is [k]

and pl = P(f (z) = l) for any l ∈ [k]. When f (z) = cutoff(z; S), further define sk = ∞

and s0 = −∞. Since z is continuous with CDF Fz, it suffices to show:

P(f (z) = l) = P(sl−1 < z ≤ sl) = Fz(sl) − Fz(sl−1) = pl, for l ∈ [k]

128

When x d
= f (z), f (z) has range [k]. For l ∈ [k], define Al = {z : f (z) = l}, sl = sup

z∈Al

z

and s0 = inf
z∈A1

z. Since P(f (z) = l) = pl > 0, we have inf
z∈Al

z < sl. Since f is monotone,

we have sl−1 ≤ inf
z∈Al

z. Claim sl−1 = inf
z∈Al

z. If not, there exists sl−1 < z∗ < inf
z∈Al

z

satisfying (l − 1) ≤ f (z∗) ≤ l. Since f (z) has range [k], f (z∗) can only be l or

l − 1. Equivalently z∗ ∈ Al or z∗ ∈ Al−1, which contradicts sl−1 < z∗ < inf
z∈Al

z. Thus

sl−1 = inf
z∈Al

z, f (z) = 1 +
∑k−1

l=1 1(z > sl),

pl = P(f (z) = l) = P(z ∈ Al) = P(sl−1 ≤ z ≤ sl) = Fz(sl) − Fz(sl−1),

Thus we have Fz(sl) =
∑l

t=1 pt ⇒ sl = F−1
z (

∑l
t=1 pt).

□

Proof of Lemma 3 Before we prove Lemma 3, we introduce the Dvoretzky-

Kiefer-Wolfowitz inequality [29], also introduced in [55].

The Dvoretzky-Kiefer-Wolfowitz Inequality. For any i.i.d. sample x1, . . . , xn with

distribution F, then when ϵ > 0,

P
(
sup
t∈R
|Fn(t) − F(t)| ≥ ϵ

)
≤ 2e−2nϵ2

, where Fn(t) =
∑n

i=1 1{xi ≤ t}
n

Proof. Applying the Dvoretzky-Kiefer-Wolfowitz inequality, for any ϵ > 0,

Pr(supt∈R |Fn(t) − F(t)| < ϵ) ≥ 1 − −2e−2nϵ2 .

Take ϵ > n−1, supt∈R

∣∣∣ n
n+1Fn(t) − F(t)

∣∣∣ < 2ϵ. Further let ϵ < K1 ≜ min {F(m)
4 , 1−F(M)

4 },

129

we have n
n+1Fn(t) ∈ [F(m)

2 , 1+F(M)
2] for t ∈ [m,M]. Then,

sup
t∈[m,M]

∣∣∣ f̂ −1(t) − f −1(t)
∣∣∣ = sup

t∈[m,M]

∣∣∣∣∣Φ−1
(n
n + 1

Fn(t)
)
− Φ−1(F(t))

∣∣∣∣∣
≤ sup

r∈[F(m)
2 , 1+F(M)

2]

∣∣∣∣(Φ−1(r)
)′∣∣∣∣ · sup

t∈[m,M]

∣∣∣∣∣ n
n + 1

Fn(t) − F(t)
∣∣∣∣∣

< 2ϵ · sup
r∈[F(m)

2 , 1+F(M)
2]

∣∣∣∣(Φ−1(r)
)′∣∣∣∣

Since
(
Φ−1(r)

)′
= 1

ϕ(Φ−1(r)) , we get supr∈[F(m)
2 , 1+F(M)

2]

∣∣∣∣(Φ−1(r)
)′∣∣∣∣ = K2 ≜

1/min
{
ϕ
(
Φ−1(F(m)

2)
)
, ϕ

(
Φ−1(F(M)+1

2)
)}

. Adjusting the constants, for 2K2n−1 < ϵ <

2K1K2, we have

P
(

sup
t∈[m,M]

∣∣∣ f̂ −1(t) − f −1(t)
∣∣∣ > ϵ) ≤ 2 exp

{
−

nϵ2

2K2
2

}
.

□

Proof of Lemma 4 Before we prove Lemma 4, we introduce the Bretagnolle-

Huber-Carol inequality introduced in [92].

The Bretagnolle-Huber-Carol Inequality. If the random vector (N1, . . . ,Nk) is

multinomially distributed with parameters n and (p1, . . . , pk), then

P

 k∑
i=1

|Ni/n − pi| ≥ ϵ

 ≤ 2ke−
1
2 nϵ2

, ϵ > 0.

Proof. According to Lemma 2, the cutoff function f (z) = cutoff(z; S) is unique

and S = {sl : sl = Φ
−1(

∑l
t=1 pt), l ∈ [k − 1]}. Define s∗l = Φ

−1
(∑n

i=1 1(xi≤l)
n

)
for l ∈ [k − 1],

130

s∗0 = −∞, s
∗
k = ∞, and ∆∗l = Φ(s∗l) − Φ(s∗l−1) =

∑n
i=1 1(xi = l)/n. Notice (n∆∗1, . . . , n∆

∗
k)

is multinomially distributed with parameters n and (p1, . . . , pk), applying the

Bretagnolle-Huber-Carol inequality, for any ϵ > 0, with probability at least 1 −

2ke−
1
2 nϵ2 ,

∑k
l=1 |∆

∗
l − pl| < ϵ. First for each l ∈ [k], |Φ(s∗l) − Φ(sl)| ≤

∑k
t=1 |∆

∗
t − pt| < ϵ.

Take ϵ > n−1, we have

∣∣∣∣∣Φ(s∗l) ·
n

n + 1
− Φ(sl)

∣∣∣∣∣ ≤ |Φ(s∗l) − Φ(sl)| +
Φ(s∗l)
n + 1

< 2ϵ

Φ(sl) − 2ϵ < Φ(s∗l) ·
n

n + 1
=

∑n
i=1 1(xi ≤ l)

n + 1
< Φ(sl) + 2ϵ

When l ∈ [k − 1], we have p1 ≤ Φ(sl) ≤
∑k−1

t=1 pt. Further let ϵ < K1 ≜ min { p1
4 ,

pk
4 },

we have p1
2 ≤ Φ(s∗l) · n

n+1 ≤ 1 − pk
2 . Thus:

||Ŝ − S||1 =
k−1∑
l=1

|ŝl − sl| =

k−1∑
l=1

∣∣∣∣∣∣Φ−1
(∑n

i=1 1(xi ≤ l)
n + 1

)
− Φ−1(Φ(sl))

∣∣∣∣∣∣
≤ sup

r∈[p1
2 ,1−

pk
2]

∣∣∣∣(Φ−1(r)
)′∣∣∣∣ · k−1∑

l=1

∣∣∣∣∣∣
∑n

i=1 1(xi ≤ l)
n + 1

− Φ(sl)

∣∣∣∣∣∣
≤

1

min
{
ϕ
(
Φ−1(p1

2)
)
, ϕ

(
Φ−1(1 − pk

2)
)} · 2(k − 1)ϵ

Let K2 = 1/min
{
ϕ
(
Φ−1(p1

2)
)
, ϕ

(
Φ−1(1 − pk

2)
)}

. Adjusting the constants, for 2(k −

1)K2n−1 < ϵ < 2(k − 1)K1K2, we have

P
(
||Ŝ − S||1| > ϵ

)
≤ 2 exp

{
−

1
8K2

2

·
nϵ2

(k − 1)2

}
.

□

131

APPENDIX B

APPENDIX OF CHAPTER 3

B.1 Proofs

Setup Suppose a p-dimensional vector x ∼ LRGC(W, σ2, f) is observed at lo-

cations O ⊂ [p] and missing atM = [p]/O. Then according to the definition of

LRGC, for t ∼ N(0, Ik), ϵ ∼ N(0, σ2Ip), and z = Wt + ϵ, we know x = f(z) and

z ∼ N(0,Σ) with Σ =WW⊤ + σ2Ip. Here we say two random vectors are equal if

they have the same CDF.

A key fact we use is that conditional on known zO, zM has a normal distribu-

tion:

zM|zO ∼ N(ΣM,OΣ
−1
O,OzO,ΣM,M − ΣM,OΣ

−1
O,OΣO,M). (B.1)

Here we use ΣI,J to denote the submatrix of Σ with rows in I and columns in J.

Plugging in Σ =WW⊤ + σ2Ip, we obtain

E[zM|zO] =WMW⊤
O

(WOW⊤
O
+ σ2I)−1zO =WM(σ2I +W⊤

O
WO)−1W⊤

O
zO. (B.2)

In last equation, we use the Woodbury matrix identity. Similarly, we obtain:

Cov[zM|zO] = σ2I + σ2WM(σ2I +W⊤
O

WO)−1W⊤
M
. (B.3)

132

Proof for Lemma 1 Using the law of total expectation,

E[zM|xO] = E
[
E[zM|zO]

∣∣∣xO] = E[WM(σ2I +W⊤
O

WO)−1W⊤
O

zO|xO]

=WM(σ2I +W⊤
O

WO)−1W⊤
O

E[zO|xO].

For the first equality, we use Eq. (B.2). Similarly we can compute the second

moments,

E[zMz⊤
M
|xO] = E

[
E[zMz⊤

M
|zO]

∣∣∣xO]
= E

[
E[zM|zO]E[zM|zO]⊤ + Cov[zM|zO]|xO

]
= E

[
E[zM|zO]E[zM|zO]⊤|xO

]
+ E [Cov[zM|zO]|xO]

= E
[
E[zM|zO]E[zM|zO]⊤|xO

]
+ Cov[zM|zO]. (B.4)

From the last equation, we use the fact that Cov[zM|xO] is fully determined by

W and σ2 and thus does not depend on xM. Plug Eq. (B.2) and Eq. (B.3) into

Eq. (B.4) to obtain

E
[
E[zM|zO]E[zM|zO]⊤|xO

]
=

WM(σ2I +W⊤
O

WO)−1W⊤
O

E[zOz⊤
O
|xO]WO(σ2I +W⊤

O
WO)−1W⊤

M
.

Then using Cov[zM|xO] = E[zMz⊤
M
|xO] − E[zM|xO]E[z⊤

M
|xO], we have

Cov[zM|xO] = σ2I|M| + σ2WM(σ2I +W⊤
O

WO)−1W⊤
M
+

WM(σ2I +W⊤
O

WO)−1W⊤
O

Cov[zO|xO]WO(σ2I +W⊤
O

WO)−1W⊤
M
.

133

Proof of Lemma 6

Proof. We use the law of total expectation similar as in Appendix B.1 by first

treating zO as known. Since E[t|zO] =M−1
O

W⊤
O

zO and Cov[t|zO] = σ2M−1
O

, we have

E[t|xO] = E[E[t|zO]|xO] = E[M−1
O

W⊤
O

zO|xO] =M−1
O

W⊤
O

E[zO|xO].

Then

E[t(zO)⊤|xO] = E[E[t(zO)⊤|zO]|xO] = E[E[t|zO](zO)⊤|xO]

=M−1
O

W⊤
O

E[zO(zO)⊤|xO] =M−1
O

W⊤
O

(
Cov[zO|xO] + E[zO|xO]E[(zO)⊤|xO]

)
=M−1

O
W⊤
O

Cov[zO|xO] + E[t|xO]E[(zO)⊤|xO].

and

E[t(t)⊤|xO] = E[E[t(t)⊤|zO]|xO] = E[M−1
O

W⊤
O

zO(zO)⊤WOM−1
O
|xO] + E[Cov[t|zO]|xO]

=M−1
O

W⊤
O

E[zO(zO)⊤|xO]WOM−1
O
+ E[σ2M−1

O
|xO]

=M−1
O

W⊤
O

(
Cov[zO|xO] + E[zO|xO]E[(zO)⊤|xO]

)
WOM−1

O
+ σ2M−1

O

=M−1
O

W⊤
O

Cov[zO|xO]WOM−1
O
+ E[t|xO]E[(t)⊤|xO] + σ2M−1

O
.

□

Proof of Theorem 3 To prove Theorem 3, we introduce a lemma which pro-

vides a concentration inequality on quadratic forms of sub-Gaussian vectors.

For a detailed treatment of sub-Gaussian random distributions, see [95]. A

random variable x ∈ R is called sub-Gaussian if (E[|x|p])1/p ≤ K
√

p for all

134

p ≥ 1 with some K > 0. The sub-Gaussian norm of x is defined as ||x||ψ2 =

supp≥1 p−1/2(E[|x|p])1/p.

Denote the inner product of vectors x1 and x2 as ⟨x1, x2⟩. A random vector

x ∈ Rp is called sub-Gaussian if the one-dimensional marginals ⟨x, a⟩ are all sub-

Gaussian random variables for any constant vector a ∈ Rp. The sub-Gaussian

norm of x is defined as ||x||ψ2 = supa∈Sp−1 ||⟨x, a⟩||ψ2 . A Gaussian random vector is

also sub-Gaussian.

Lemma 2. Let Σ ∈ Rp×p be a positive semidefinite matrix. Let x = (x1, . . . , xp) be

a sub-Gaussian random vector with mean zero and covariance matrix Ip. For all

t > 0,

Pr
[
x⊤Σx > (

√
tr(Σ) +

√
2λ1(Σ)t)2

]
≤ e−t.

Our Lemma 2 is Lemma 17 in [97], which is also a simplified version of

Theorem 1 in [47].

Proof. Since f is elementwise Lipschitz with constant L,

MSE(x̂) =
||fM(zM) − fM(ẑM)||22

||M||
≤ L2 ||zM − ẑM||22

||M||
. (B.5)

Denote the covariance matrix of zM conditional on zO as Σ(M). Apply the

above inequality with Σ = Σ(M) and x = Σ−1/2
(M) zM, we obtain:

Pr
(
||zM − ẑM||22 >

(√
tr(Σ(M)) +

√
2λ1(Σ(M))t

)2
)
≤ e−t. (B.6)

135

Notice

tr(Σ(M)) = tr
(
σ2I + σ2WM(σ2I +W⊤

O
WO)−1W⊤

M

)
= σ2|M| + σ2tr

(
(σ2I +W⊤

O
WO)−1W⊤

M
WM

)
≤ σ2|M| + σ2λ1(σ2I +W⊤

O
WO)−1)tr

(
W⊤
M

WM

)
= σ2|M| + σ2 1

σ2 + λ2
k(WO)

(1 − σ2)|M|.

In the inequality, we use the fact tr(AB) ≤ λ1(A)tr(B) for any real symmetric

positive semidefinite matrices A and B. In the last equation, we use the unit

diagonal constraints of WW⊤+σ2Ip such that tr(W⊤
M

WM) = tr(WMW⊤
M

) = |M|(1−

σ2). Also notice

λ1(Σ(M)) = λ1(σ2I + σ2WM(σ2I +W⊤
O

WO)−1W⊤
M

)

≤ σ2 + σ2λ1(WM(σ2I +W⊤
O

WO)−1W⊤
M

)

≤ σ2 + σ2λ2
1(WM)λ1((σ2I +W⊤

O
WO)−1)

= σ2 + σ2 λ2
1(WM)

σ2 + λ2
k(WO)

.

Thus,

||zM − ẑM||22 ≤ σ
2|M| ·

√

1 +
1 − σ2

σ2 + λ2
k(WO)

+

√(
1 +

λ2
1(WM)

σ2 + λ2
k(WO)

)
2t
|M|

2

. (B.7)

Combining Eq. (B.5), Eq. (B.6) and Eq. (B.7), we finish the proof. □

Proof of Corollary 1 We first introduce a result from [95, Theorem 5.39] char-

acterizing the singular values of long random matrices with independent sub-

136

Gaussian rows.

Lemma 3. Let A ∈ Rp×k be a matrix whose rows a j are independent sub-

Gaussian random vectors in Rk whose covariance matrix is Σ. Then for every

t > 0, with probability as least 1 − 2 exp(−ct2) one has

λ1

(
1
p

A⊤A − Σ
)
≤ max(δ, δ2)λ1(Σ), where δ = C

√
k
p
+

t
√

p
.

Here c, C > 0 depend only on the subgaussian norm K = max j ||Σ
−1/2a j||ψ2 .

Proof. Apply Lemma 3 to submatrix WO and WM respectively with covariance

matrix Σ = 1−σ2

k Ik, we obtain with probability at least 1− 2 exp(−ct2
1)− 2 exp(−ct2

2),

∣∣∣∣∣∣ 1
|O|
λ2

k(WO) −
1 − σ2

k

∣∣∣∣∣∣ ≤ 1 − σ2

k
ϵ1 and

∣∣∣∣∣∣ 1
|M|

λ2
1(WM) −

1 − σ2

k

∣∣∣∣∣∣ ≤ (1 − σ2)ϵ2

k
,

where ϵ1 = max(δ1, δ
2
1) with δ1 =

C
√

k+t1√
|O|

and ϵ2 = max(δ2, δ
2
2) with δ2 =

C
√

k+t2√
|M|

.

Constants c, C > 0 only depend on the subgaussian norm max j ||

√
k

1−σ2 w j||ψ2 .

For any 0 < ϵ < 1, let t1 =
ϵ
√
|O|

2 and t2 =
ϵ
√
|O|

2
√

c2
. Suppose the sufficiently large

constant c1 satisfies c1 >
4C2 max(1,c2)

ϵ2 . Then we have

ϵ1 = δ1 =
C
√
|O|/k

+
t
√
|O|

<
C
√

c1
+
ϵ

2
<

C√
4C2/ϵ2

+
ϵ

2
= ϵ,

and

ϵ2 = δ2 =
C

√
|M|/k

+
t
√
|M|

<
C

√
|O|/c2k

+
ϵ

2
<

C√
4C2/ϵ2

+
ϵ

2
= ϵ.

137

Thus we have with probability at least 1−2 exp(−cϵ2|O|/4)−2 exp(−cϵ2|O|/4c2),

λ2
k(WO) > (1 − σ2)(1 − ϵ)

|O|

k
and λ2

1(WM) ≤ (1 − σ2)(1 + ϵ)
|M|

k
. (B.8)

Combining Eq. (B.7) and Eq. (B.8), then with probability at least 1 − exp(−t) −

2 exp(−cϵ2|O|/4) − 2 exp(−cϵ2|O|/4c2),

||zM − ẑM||22
|M|

≤ σ2

√

1 +
1

σ2

1−σ2 + (1 − ϵ)|O|/k
+

√
2t
|M|
+

2(1 + ϵ)t
kσ2

1−σ2 + (1 − ϵ)|O|

2

≤ σ2

√

1 +
1

σ2

1−σ2 + (1 − ϵ)|O|/k
+

√
2c2t
|O|
+

2(1 + ϵ)t
kσ2

1−σ2 + (1 − ϵ)|O|

2

. (B.9)

Now take t = log |O|, with fixed k and σ2, the right hand side is 1 + O
(√

log |O|
|O|

)
.

Notice |O| > c1k ≥ c1. Then there exists some constant c3 > 0 such that |O|

satisfies:

log |O| < c3
cϵ2|O|

4 max(1, c2)

thus Eq. (B.9) holds with probability at least 1 − 1+2c3
|O|

. Combing the result with

Eq. (B.5) completes the proof. □

B.2 Additional experiments

B.2.1 LRGC imputation under correct model

For LRGC imputation, we show the random variation of the error (due to error

in the estimate of zM) dominates the estimation error (due to errors in the esti-

138

Table B.1: Imputation error (NRMSE) on synthetic continuous data over 20 rep-
etitions.

Setting LRGC LRGC-Oracle

Low Rank 0.347(.004)) .330(.004)
High Rank 0.517(.011) .433(.007)

mates of the parameters W and σ). To do so, we compare the imputation error

of LRGC imputation with estimated model parameters (LRGC) and true model

parameters (LRGC-Oracle). For ordinal data, imputation requires approximat-

ing truncated normal moments, which may blur the improvement of using true

model parameters. Thus we conduct the comparison on the same continuous

synthetic dataset described in Section 4. The results are reported in Table B.1.

Compared to LRGC, LRGC-Oracle only improves slightly (1%) over low

rank data. Thus the model estimation error is dominated by the random varia-

tion of the imputation error. For high rank data, the improvement (8%) is still

small compared to the gap between LRGC imputation and LRMC algorithms

(≥ 18%). Also notice the marginal transformation g j(z) = z3 for high rank data is

not Lipschitz, so the theory presented in this paper does not bound the LRGC

imputation error.

The result here indicates there is still room to improve LRGC imputation

when the marginals are not Lipschitz. We leave that important work for the

future.

139

B.2.2 Imputation error versus reliability shape with varying

number of ordinal levels

We show in this section the imputation error versus reliability curve shape on

ordinal data with many ordinal levels will match that on continuous data. The

results here indicate the prediction power of LRGC reliability depends on the

imputation task. The prediction power is larger for easier imputation task. In

the synthetic experiments, imputing continuous data is harder than imputing

ordinal data, and imputing 1-5 ordinal data is harder than imputing binary data.

We follow the synthetic experiments setting used in Section 4, but vary the

number of ordinal levels to {5, 8, 10}. We adopt high SNR setting for ordinal

data and low rank setting for continuous data. To make the imputation error

comparable between continuous data and ordinal data, we measure the ratio

of the imputation error over the m% entries to the imputation error over all

missing entries. Shown in Fig. B.1, the curve shape for low rank continuous

data is similar to that for ordinal data with 5–8 levels. Also notice, NRMSE for

continuous data involves the observed data values while MAE does not, which

may cause small difference in the curve shape.

B.3 Experimental details

Synthetic data To select the best value of the key tuning parameter for each

method, we first run some initial experiments to determine a proper range such

that the best value lies strictly inside that range.

140

Figure B.1: Imputation error on the subset of m% most reliable entries, reported
over 5 repetitions.

For LRGC, the only tuning parameter is rank. We find that a range of 6 − 14

for continuous data (both low and high rank), and 3 − 11 for ordinal data with

5 levels and binary data (high SNR and low SNR), suffices to ensure the best

value is strictly inside the range. Notice this range is still quite small, so it is

rather easy to search over.

For softImpute, the only tuning parameter is the penalization parameter.

As suggested by the vignette of the R package [42], we first center the rows

and columns of the observations using the function biScale() and then com-

pute λ0 as an upper bound on the penalization parameter using the function

lambda0(). The penalization parameter range is set as the exponentially de-

caying path between λ0 and λ0/100 with nine points for all cases:

exp(seq(from=log(lam0),to=log(lam0/100),length=9)).

We found increasing the path length from 9 to 20 only slightly improves the

performance (up to .01 across all cases) on best performance on test set.

141

Table B.2: Run time (in seconds) for synthetic data at the best tuning parameter;
mean (variance) reported over 20 repetitions.

Continuous LRGC PPCA softImpute MMMF-ℓ2 MMC
Low Rank 5.7(0.2) 2.9(0.4) 0.7(0.0) 3.3(1.0) 457.9(10.4)
High Rank 6.5(0.3) 0.3(0.1) 1.1(0.2) 7.6(2.0) 554.4(32.0)

1-5 ordinal LRGC PPCA softImpute MMMF-BvS MMMF-ℓ1

High SNR 27.2(0.7) 1.0(0.2) 1.2(0.1) 19.2(1.5) 17.4(1.2)
Low SNR 19.8(0.8) 0.3(0.1) 1.3(0.0) 17.4(1.5) 17.0(1.4)

Binary LRGC PPCA MMMF-hinge MMMF-logistic MMMF-ℓ1

High SNR 66.7(3.0) 0.9(0.5) 3.8(0.3) 4.4(0.6) 2.1(0.3)
Low SNR 52.0(4.4) 0.3(0.1) 3.4(0.4) 3.3(0.4) 1.9(0.2)

For MMMF, there are two tuning parameters: the rank and the penalization

parameter. We set the rank to be allowed maximum rank 199. We set the range

of penalization parameter as we do for softImpute, with left and right end-

points that depend on the data. For MMMF-ℓ2 on continuous data and MMMF-BvS

on ordinal data, we use λ0/4 as start point and λ0/100 as end point. For all other

MMMF methods, we use λ0 as start point and λ0/100 as end point.

For MMC, following the authors’ suggestions regarding the code, we use the

following settings: (1) the number of gradient steps used to update the Z matrix

is 1; (2) the tolerance parameter is set as 0.01; In addition, we set the initial

rank as 50, the increased rank at each step as 5, the maximum rank as 199, the

maximum number of iterations as 80 and the Lipshitz constant as 10. Finally,

the key tuning parameter we search over is the constant step size as suggested

by the authors of [36]. The range is set as {3, 5, 7, . . . , 17, 19}.

The complete results are plotted in Fig. B.2. Clearly, LRGC does not overfit

even for high ranks, across all settings. We also provide the runtime for each

method at the best tuning parameter in Table B.2. Notice our current imple-

mentation is written entirely in R, and thus further acceleration is possible.

142

0.00

0.25

0.50

0.75

1.00

6 7 8 9 10 11 12 13 14
rank

N
R

M
S

E

LRGC

0.00

0.25

0.50

0.75

1.00

6 7 8 9 10 11 12 13 14
rank

N
R

M
S

E

PPCA

0.00

0.25

0.50

0.75

1.00

0−0.6−1.2−1.7−2.3−2.9−3.5−4−4.6
penalization

N
R

M
S

E

softImpute

0.00

0.25

0.50

0.75

1.00

−1.4−1.8−2.2−2.6−3−3.4−3.8−4.2−4.6
penalization

N
R

M
S

E

GLRM−l2

0.00

0.25

0.50

0.75

1.00

3 5 7 9 11 13 15 17 19
stepsize

N
R

M
S

E

MMC

Setting LowRank HighRank

0.00

0.25

0.50

0.75

1.00

3 4 5 6 7 8 9 10 11
rank

M
A

E

LRGC

0.00

0.25

0.50

0.75

1.00

3 4 5 6 7 8 9 10 11
rank

M
A

E

PPCA

0.00

0.25

0.50

0.75

1.00

0−0.6−1.2−1.7−2.3−2.9−3.5−4−4.6
penalization

M
A

E

softImpute

0.00

0.25

0.50

0.75

1.00

−1.4−1.8−2.2−2.6−3−3.4−3.8−4.2−4.6
penalization

M
A

E

GLRM−BvS

0.00

0.25

0.50

0.75

1.00

−1.4−1.8−2.2−2.6−3−3.4−3.8−4.2−4.6
penalization

M
A

E

GLRM−l1

0.0

0.1

0.2

0.3

3 4 5 6 7 8 9 10 11
rank

M
A

E

LRGC

0.0

0.1

0.2

0.3

3 4 5 6 7 8 9 10 11
rank

M
A

E

PPCA

0.0

0.1

0.2

0.3

0−0.6−1.2−1.7−2.3−2.9−3.5−4−4.6
penalization

M
A

E

softImpute

0.0

0.1

0.2

0.3

0−0.6−1.2−1.7−2.3−2.9−3.5−4−4.6
penalization

M
A

E

GLRM−logistic

0.0

0.1

0.2

0.3

0−0.6−1.2−1.7−2.3−2.9−3.5−4−4.6
penalization

M
A

E

GLRM−hinge

Setting HighSNR LowSNR

Figure B.2: Imputation error over a key tuning parameter reported over 20 rep-
etitions. The error bars ara invisible. The penalization parameter λ is plotted
over the log-ratios log(α) which satisfies λ = αλ0.

MovieLens 1M The dataset can be found at https://grouplens.org/

datasets/movielens/1m/. Similar to the synthetic experiments, we choose

the tuning parameter for each method on a proper range determined through

some initial experiments. For LRGC, we choose the rank from {8, 10, 12, 14} to

be 10. With λ0 calculated as for the synthetic data, for softImpute, we select

the penalization parameter from {λ0
2 ,

λ0
4 ,

λ0
6 ,

λ0
8 } to be λ0

4 ; for MMMF-BvS, we set the

rank as 200 and select the penalization parameter from { λ0
10 ,

λ0
12 ,

λ0
14 ,

λ0
16 ,

λ0
18 } to be λ0

14 .

143

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/1m/

APPENDIX C

APPENDIX OF CHAPTER 4

C.1 Proofs

Proof of Theorem 2

Proof. Theorem 2 is an immediate consequence of the normality of zM condi-

tional on zO = f−1
O

(xO) (see Eq. (B.1)) and the elementwise strictly monotone f. □

Proof of Theorem 3 Suppose x = (x1, . . . , xp) where x j is ordinal with k j(≥ 2)

ordinal levels encoded as {1, . . . , k j} for j ∈ [p]. For ordinal data, the conditional

distribution of zM|zO ∈ f−1
O

(xO) is intractable. Consequently, we cannot establish

distribution-based confidence intervals for zM.

Instead, for each marginal j, we can lower bound the probability of event

|x̂ j − x j| ≤ d for the Gaussian copula imputation x̂ j and d ∈ Z. Since Pr(|x̂ j − x j| ≤

k j − 1) = 1, it suffices to consider d < k j − 1. In practice, the result is more useful

for small d, such as d = 0. Let us first state a generalization ofTheorem 3.

Theorem 4. Suppose x ∼ GC(Σ, f) with observations xO and missing entries xM.

Also for each marginal j ∈ [p], x j takes values from {1, . . . , k j} and thus the f j is

a step function with cut points S j = {s1, . . . , sk j−1}:

f j(z) = 1 +
k j−1∑
k=1

1(z > sk), where −∞ =: s0 < s1 < . . . < sk j−1 < sk j := ∞.

For a missing entry x j, j ∈ M, the set of values for z j that would yield the same

144

imputed value x̂ j = f j(E[z j|xO]) is f −1
j (x̂ j) = (sx̂ j−1, sx̂ j]. Then the following holds:

Pr(|x̂ j − x j| ≤ d) ≥ 1 −
Var[z j|xO]

d2
j

,

with

d j = min(|E[z j|xO] − smax(x̂ j−1−d,0)|, |E[z j|xO] − smin(x̂ j+d,k j)|),

where E[z j|xO],Var[z j|xO] are given in Lemma 1 withM replaced by j.

Proof. The proof applies to each missing dimension j ∈ M. Let us further define

sk = −∞ for any negative integer k and sk = ∞ for any integer k > k j for con-

venience. Then sk = smax(k,0) for negative integer k and sk = smin(k,k j) for integer k

larger than k j.

First notice |x̂ j − x j| ≤ d if and only if z j ∈ (sx̂ j−1−d, sx̂ j+d] for the latent normal z j

satisfying x j = f j(z j). Specifically, when d = 0, x̂ j = x j if and only if z j ∈ (sx̂ j−1, sx̂ j],

i.e. f −1
j (x j) = (sx̂ j−1, sx̂ j] = f −1

j (x̂ j). Notice we have,

E[z j|xO] ∈ (sx̂ j−1, sx̂ j] ⊂ (sx̂ j−1−d, sx̂ j+d].

Thus a sufficient condition for z j ∈ (sx̂ j−1−d, sx̂ j+d] is that z j is sufficiently close to

its conditional mean E[z j|xO]. More precisely,

|E[z j|xO] − z j| ≤ min(|E[z j|xO] − sx̂ j−1−d|, |E[z j|xO] − sx̂ j+d|)→ |x̂ j − x j| ≤ d.

145

Define d j := min(|E[z j|xO] − sx̂ j−1−d|, |E[z j|xO] − sx̂ j+d|). Notice when d = 0,

d j = min(|E[z j|xO] − sx̂ j−1|, |E[z j|xO] − sx̂ j |) = min
s∈S
|E[z j|xO] − s|.

Use the Markov inequality together with the conditional distribution of z j given

xO to bound

Pr(|E[z j|xO] − z j| > d j) ≤
Var[z j|xO]

d2
j

,

which completes our proof. □

146

APPENDIX D

APPENDIX OF CHAPTER 5

D.1 Proofs

Proof of Lemma 7

Proof. First note

Q(Σ;Σt, {xi
Oi
}t∈S t) =

1
|S t|

∑
i∈S t

E[ℓ(Σ; {zi, xi
Oi
}i∈S t)|x

i
Oi
,Σt−1, f̂]

=
1
|S t|

∑
i∈S t

E
[
c −

log |Σ|
2
−

(zi)⊤Σ−1zi

2

∣∣∣∣xi
Oi
,Σt−1, f̂

]

=E

c − log |Σ| + tr
(
Σ−1 1

|S t |

∑
i∈S t

zi(zi)⊤
)

2

∣∣∣∣∣∣xi
Oi
,Σt−1, f̂

=c −

log |Σ| + tr
(
Σ−1E

[
1
|S t |

∑
i∈S t

zi(zi)⊤|xi
Oi
,Σt−1, f̂

])
2

where c > 0 is a constant.

Denote

Et = E
[∑

i∈S t
zi(zi)⊤

|S t|
|xi
Oi
,Σt−1, f̂

]
It is easy to show through induction that Qt(Σ) can be written as

Qt(Σ) =
t∑

l=1

αt
lQ(Σ;Σl−1, {xi}i∈S l),

147

with
∑t

l=1 α
t
l = 1 and αt

l > 0. Thus we have

Qt(Σ) = c −
log |Σ| + tr(Σ−1 ∑t

l=1 α
t
lEt)

2

Then solving argmaxΣ Qt(Σ) is the classical problem of the MLE of Gaussian co-

variance matrix, which yields Σt = argmax Qt(Σ) =
∑t

l=1 α
t
lEl, when

∑t
l=1 α

t
lEl is

positive definite. Since we require |S l| > p, we have El as positive definite ma-

trix and thus
∑t
ℓ=1 α

t
lEt is also positive definite.

For the first data batch, Σ1 is estiamed as in the offline setting: Σ1 = E1 wit

initial estimate Σ0, thus we set γ0 = 1 to satisfy Σt+1 = (1 − γt)Σt + γtEt+1 for t = 0.

For any t > 1 and γt ∈ (0, 1), note by the definition of Qt(Σ):

αt+1
l = α

t
l(1 − γt), for l = 1, . . . , t, and αt+1

t+1 = γt.

then

Σt+1 =

t+1∑
l=1

αt+1
l El =

t∑
l=1

αt+1
l El + α

t+1
t+1Et+1

=

t∑
l=1

αt
l(1 − γt)El + γtEt+1 = (1 − γt)Σt + γtEt+1.

which finishes the proof. □

Proof of Theorem 4

We first formally define some concepts, and then rigorously restate Theorem 4

with complete description. In the proof, we show our Theorem 4 is a special case

148

of Theorem 1 in [18] by verifying the their required assumptions are satisfied in

our setting.

Distribution function for mixed data For a mixed data vector x = (xC, xD)

with xC as continuous random variables and xD as ordinal random variables,

we use the notion of distribution function for x as f (x) = f (xC)P(xD) ∈ R, with

f (xC) as the PDF of xC and P(xD) as the PMF (probability mass function) of xD.

Distribution over incomplete data Let x̃ = (x̃1, ..., x̃p) = (x̃O, x̃M) be a underly-

ing complete vector that is observed at O ⊂ [p], m be the associated observed-

data indicator vector: m = (m1, ..,mp) where m j = 1 if x̃ j is observed (j ∈ O) and

m j = 0 if x̃ j is missing (j ∈ M). Also define x = (x1, ..., xp) be the incomplete

version of x̃ with a special category NA at missing locations: x j = x̃ j if m j = 1

and x j = NA if m j = 0. Denote the deterministic mapping from (x̃,m) to x as

T (x̃,m) = x.

Once we are given an incomplete data vector x, the actual observation is

(xO,m). Our goal is to learn the distribution associated with the underlying

complete vector x̃ instead of the distribution of x, since the latter also requires

characterizing the distribution of m. Under the missing at random (MAR) as-

sumption, we have

f (xO,m) =
∫

f (xO, xM)P(m|xO, xM)dxM

=

∫
f (xO, xM)dxMP(m|xO) = f (xO)P(m|xO).

To distinguish a few definitions, there is a distribution π∗(x̃) for the true un-

149

derlying complete vector x̃, a (joint) distribution π(x) over the observed entries

xO and the missing locations m, and a (marginal) distribution π(xO) over the

observed entries xO. There is a one-to-one correspondence between the com-

plete data distribution π∗(x̃) and the observed data distribution π(xO), since π(xO)

is the marginal distribution of π∗(x̃) over dimensions O. The joint distribution

π(x) = π(xO)P(m|xO), further requires the conditional distribution of m|xO, which

is unknown.

When we say true data distribution over the observed entries, we refer to

the (marginal) distribution π(xO). With a Gaussian copula model GC(Σ, f), we

denote the underlying complete distribution as g∗
Σ
(x̃), and the distribution of

observed data as gΣ(xO). We further construct the joint distribution over (xO,m)

as gΣ(x), using the same conditional distribution P(m|xO) as in π(x), for the pur-

pose of proof. We ignore the dependence on f because it is kept fixed during EM

iterations, while Σ is updated at each iteration. Define d(x, A) = inf(y ∈ A, |x − y|)

with | · | as the ℓ2 norm. Now we are ready to restate our Theorem 4.

Theorem 5. Let π(xO) be the distribution function of the true data-generating

distribution of the observations and gΣ(xO) be the distribution function of the

observed data from GC(Σ, f), assuming data is missing at random (MAR). Let

L = {Σ ∈ S p
++ : ∇ΣKL(π||gΣ) = 0} be the set of stationary points of KL(π||gΣ) for a

fixed f. Under the following conditions,

1. f remains unchanged across EM iterations; for all continuous dimensions j,

the range of f −1
j is a subset of [−C,C] for some C > 0; for each ordinal dimen-

sion j, the step function f j only has finite number of steps, i.e. f j(z j) has finite

number of ordinal levels.

2. The step-sizes γt ∈ (0, 1) satisfy
∑∞

t=1 γ
2
t <

∑∞
t=1 γt = ∞.

150

3. With probability 1, lim sup|Σt| < ∞ and lim inf{d(Σt, (S
p
++)c)} > 0.

4. Let Xt (size |S t| × p) denote the data observation in the t-th batch with points

i.i.d. π(x), and Zt as the latent data matrix corresponding to Xt. For the set

Γ = {s ∈ S p
++ : Eπ[EΣ=s[Z⊤t Zt|Xt]] = s} and w(Σ) := KL(π||gΣ), w(Γ) is nowhere

dense.

then the iterates Σt produced by our online EM (Algorithm 5) satisfies that

limt−→∞ d(Σt,L) = 0 with probability 1.

Proof. We first formally state our latent model: the observed variables and the

latent variables, as well as the conditional distribution of the latent given the

observed. Then we show our stated convergence result is a special case of the

result in Theorem 1 of [18]. The following proof consists of showing our latent

model satisfies the assumptions required in Theorem 1 of [18], and thus our

results hold according to Theorem 1 of [18].

The employed latent model We treat our defined x (with NA at missing en-

tries) as the “observed variables” in our latent model. Since x = T (x̃,m) and

there exists a Gaussian latent variable z ∼ N(0,Σ) such that x̃ = f(z), we treat

(z,m) as our “latent variables”. Conditional on known x, the distribution of m

reduces to a single point, denoted as mx. The distribution of z is N(0,Σ) trun-

cated to the region {z : T (f(z),mx) = x} for x̃. With slight abuse of notation, we

write {z : T (f(z),mx) = x} as f−1(x) and f −1
j (NA) = R for any j ∈ [p]. Now note

KL(π(x)||gΣ(x)) = ExO,m log
π(xO)P(m|xO)
gΣ(xO)P(m|xO)

= KL(π(xO)||gΣ(xO)).

151

Thus our stated result matches Theorem 1 of [18]: the online EM estimate

converges to the set of stationary points of KL divergence between the true data

distribution and the learned data distribution, on “observed variables” x.

Verification of Assumptions 1 in [18] For simplicity, assume each data batch

has n points. We drop the time index on the data points and simply write the

data points in each batch as {xi}i=1,..,n or the corresponding matrix X. Also de-

note the latent data as {zi,mi}i=1,..,n and the corresponding matrix data Z,M. The

complete data likelihood for a batch is

L(Σ; {xi, zi,mi}) = celog |Σ|+ 1
n tr(Σ−1Z⊤Z),

where c is a constant w.r.t. Σ:

c =
n∏

i=1

1(T (f(zi),mi) = xi) f (mi)(2π)−
np
2 e−

n
2 .

Thus it belongs to the exponential family, with sufficient statistics s = 1
nZ⊤Z,

ψ(Σ) = − log |Σ| and ϕ(Σ) = Σ−1. Thus Assumption 1a is satisfied.

Denote the sample space for Σ as the set of all positive definite symmetric

matrices: Θ = S p
++. The function s̄(X;Σ) := EΣ[Z⊤Z|X] is well defined for all X

and all Σ ∈ Θ. To see why, note E[z j|x j] and Var[z j|x j] have finite closed form

expression for any x j, and thus E[z2
j |x j] has finite closed form expression for any

x j for all j ∈ [p]. Then for any i, j ∈ [p], E[ziz j|x] is finite and thus well defined

using Cauchy inequality. Thus Assumption 1b is satisfied.

Let S = S p
++, then clearly S is a convex open subset of all symmetric matrices.

152

For any Σ,Σ′ ∈ S, any X and γ ∈ [0, 1), we have s̄(X̄;Σ) as positive semidefinite

matrix and thus (1−γ)Σ′+γ s̄(X;Σ) ∈ S. In our situation, ℓ(s;Σ) = log |Σ|+ tr(Σ−1s).

Note solving maxΣ∈S ℓ(s;Σ) is equivalent to solving the MLE of multivariate nor-

mal covariance. By classical results, for any s ∈ S, ℓ(s;Σ) has a unique global

maximum over Θ at Σ = s, denoted as Σ̄(s) = s. Thus Assumption 1c is satisfied.

Verification of Assumptions 2 in [18] For (2a), in our situation, ψ(Σ) = − log |Σ|

and ϕ(Σ) = Σ−1 are clearly twice continuous differentiable in Θ = S p
++. For (2b),

Σ̄(s) is simply the identity function and thus continuously differentiable in S.

For (2c), first note

s̄(X; Σ̄(s)) = s̄(X; s) = EΣ=s[Z⊤Z|X]

Now we bound the max-norm of EΣ=s[Z⊤Z|X] uniformly over all possible X for

a given s. To do so, it suffices to bound the max-norm of EΣ=s[zi(zi)⊤|xi] for a

single point i. We ignore i for notation simplicity. It suffices to bound the max-

norm of the diagonal entries, since we can bound the max-norm all off-diagonal

entries using the max-norm of the diagonal entries through Cauchy-Schwarz

inequality. Now if x j is an observed continuous entry, by regularity condition

on f, we have z j = f −1
j (x j) ∈ [−C,C] and thus EΣ=s[z2

j |x j] is finite. If x j is a missing

entry, we have EΣ=s[z2
j |x j] = s2

j j, the (j, j)-th entry of s. At last if x j is an observed

ordinal entry, we have

EΣ=s[z2
j |x j] =

∫
z j∈ f −1

j (x j)
z2

jϕ(z j; 0, s2
j j)dz j∫

z j∈ f −1
j (x j)

ϕ(z j; 0, s2
j j)dz j

≤C j

∫
z j∈ f −1

j (x j)
z2

jϕ(z j; 0, s2
j j)dz j

≤C j

∫
z j∈R

z2
jϕ(z j; 0, s2

j j)dz j = C js2
j j.

153

where C j =
1

min j
∫

z j∈ f−1
j (x j)

ϕ(z j;0,s2
j j)dz j

. Note C j is finite and depends only on the step-

wise function f j which has only finite number of steps. Thus we can uniformly

bound the max-norm of diagonal entries of EΣ=s[z2
j |x j] using diagonal entries of

s. For all compact subsets K ⊂ S, and for all s ∈ K , the diagonal entries of s

are bounded and thus EΣ=s[Z⊤Z|X] are bounded. In other words, we can bound

sups∈K |s̄(X; Σ̄(s))| uniformly over X for a given K . Using similar arguments, for

any k > 2, we can bound sups∈K |s̄(X; Σ̄(s))|k uniformly over X for a given K and

thus Eπ(sups∈K |s̄(X; Σ̄(s))|k) < ∞ for fixed f.

Now we have verified all the assumptions of Theorem 1 in [18] which we do

not include as our assumptions, and thus finishes the proof. □

Discussion on our assumptions Our assumption 1 is easily satisfied in prac-

tice. Once with access to moderate number of data points, once can pre-compute

f and fix it among EM iterations. Our experiments show 200 data points can

provide good performance. In practice, one use the scaled empirical CDF to

estimate f −1, which ensures f −1
j to be a subset of [−C,C] for sufficiently large C

(depending on data size n). Also it is reasonable to model all ordinal variables to

have finite number of ordinal levels, since we can only observed finite number

of levels in practice.

Our assumptions 2-4 follow the assumptions in Theorem 1 of [18]. Assump-

tion 2 is standard for decreasing step size stochastic approximation and γt = c/t

with some constant c > 0 satisfies the condition. Assumption 3 corresponds to a

stability assumption which is not trivial. In practice, we enforce the stability by

projecting the estimated covariance matrix to a correlation matrix.

154

Offline Sim (5000 × 15) Movielens (6027 × 207)
Offline EM 188(1), 87(2) 1690(9), 781(2)
Minibatch EM 48(1), 28(0) 252(2), 142(2)
Online EM 52(0), 34(1) 269(3), 169(11)

Table D.1: Mean(sd) runtime of Gaussian copula methods for offline datasets
over 10 trials. In each cell, the runtime with 2 cores follows that with 1 core.

D.2 Additional experiments

D.2.1 Acceleration of parallelism

Here we report the acceleration achieved using parallelism for Gaussian copula

methods. We only report the runtime comparison on offline datasets, since the

parallelism does not influence the algorithm accuracy. We use 2 cores to imple-

ment the parallelism. The results in Appendix D.2.1 show the parallelism brings

considerable speedups for all Gaussian copula algorithms.

D.2.2 Robustness to varying data dimension, missing ratio and

missing mechanism

We add experiments under MAR and MNAR and also experiments using miss-

ing ratios, number of samples, and variable dimensions in our online synthetic

experiments. The original setting has p = 15 variables, 6000 samples in total

(n = 2000 samples for each distribution period), and 40% missing entries under

MCAR. We vary each of these three setups: n, p, and missing ratio. We also de-

sign MNAR such that larger values have smaller missing probabilities, shown

as in Table D.2.

155

Table D.2: A MNAR mechanism used. For each variable, the missing probability
p of an entry z solely depends on its own value. Entries with smaller values have
high missing probabilities.

Variable type p = 0.2 p = 0.4 p = 0.6
Continuous z > 75% quantile z ∈ (25%, 75%) quantiles z < 25% quantile
Ordinal z ∈ {4, 5} z ∈ {3} z ∈ {1, 2}
Binary z = 1 NA z = 0

Table D.3: Mean(sd) for imputation error for additional synthetic online data
experiments w.r.t. different missing ratios over 10 trials.

Method Cont Ord Bin
20% missing

OnlineEM .76(.08) .81(.10) .63(.12)
OnlineKFMC .94(.06) 1.08(.38) .79(.15)
GROUSE 1.17(.06) 1.70(.36) 1.12(.11)

40% missing
OnlineEM .84(.07) .89(.07) .72(.11)
OnlineKFMC .98(.06) .17(.46) .88(.12)
GROUSE 1.20(.07) 1.80(.40) 1.10(.06)

60% missing
OnlineEM .91(.05) .96(.04) .83(.09)
OnlineKFMC 1.02(.07) 1.32(.59) .96(.10)
GROUSE 1.31(.14) 2.09(.49) 1.12(.06)

The results in Table D.3, Table D.4, Table D.5 and Table D.6 record the scaled

MAE (SMAE) of the imputation estimator, as used in Table 5.1. They show our

method is actually robust to violated missing mechanisms and various number

of samples, dimensions and missing ratios.

156

Table D.4: Mean(sd) for imputation error for additional synthetic online data
experiments w.r.t. different number of data points over 10 trials.

Method Cont Ord Bin
n = 1000

OnlineEM .87(.08) .90(.09) .75(.13)
OnlineKFMC 1.01(.08) 1.29(.51) .95(.13)
GROUSE 1.22(.09) 1.80(.45) 1.12(.06)

n = 2000
OnlineEM .84(.07) .89(.07) .72(.11)
OnlineKFMC .98(.06) 1.17(.46) .88(.12))
GROUSE 1.20(.07) 1.80(.40) 1.10(.06)

n = 3000
OnlineEM .83(.06) .88(.07) .70(.10)
OnlineKFMC .97(.05) 1.10(.38) .83(.13)
GROUSE 1.20(.06) 1.80(.34) 1.11(.06)

Table D.5: Mean(sd) for imputation error for additional synthetic online data
experiments w.r.t. different data dimensions over 10 trials.

Method Cont Ord Bin
p = 15

OnlineEM .84(.07) .89(.07) .72(.11)
OnlineKFMC .98(.06) 1.17(.46) .88(.12)
GROUSE 1.20(.07) 1.80(.40) 1.10(.06)

p = 30
OnlineEM .85(.07) .90(.07) .74(.10)
OnlineKFMC .98(.05) .89(.11) .98(.06)
GROUSE 1.13(.05) 1.12(.06) 1.14(.05)

p = 45
OnlineEM .86(.07) .92(.08) .76(.09)
OnlineKFMC .98(.05) .98(.05) .98(.05)
GROUSE 1.13(.06) 1.13(.06) 1.12(.06)

Table D.6: Mean(sd) for imputation error for additional synthetic online data
experiments w.r.t. different missing mechanisms over 10 trials.

Method Cont Ord Bin
MCAR

OnlineEM .84(.07) .89(.07) .72(.11)
OnlineKFMC .98(.06) 1.17(.46) .88(.12)
GROUSE 1.20(.07) 1.80(.40) 1.10(.06)

MNAR
OnlineEM .89(.07) .99(.07) .73(.05)
OnlineKFMC .93(.05) 1.22(.54) .70(.11)
GROUSE 1.46(.07) 1.95(.40) .66(.04)

157

APPENDIX E

APPENDIX OF CHAPTER 7

Proof of Theorem 5

Proof. Denote Pr(argmaxi=0,1,...,K zi = k) = pk(µ) for k = 0, 1, ...,K and P(µ) =

(p1(µ), ..., pK(µ)). Also define ek: ek ∈ RK has 1 at coordinate k and zero else-

where.

We prove existence by contradiction. Suppose there is no satisfying µ. Let

µ∗ = argmin
µ

f (µ), where f (µ) =
K∑

k=1

|pk(µ) − pk|. (E.1)

We first consider the scenario that pk(µ∗) ≤ pk for all k = 1, ..,K. Then there exists

at least one positive i such that pi(µ∗) < pi. Since pi(µ∗ + λei) is a continuous

function w.r.t. λ and limλ→∞ pi(µ∗ + λei) = 1, there exists a λ0 > 0 such that

pi(µ∗ + λ0ei) = pi. Note pk(µ∗ + λei) is strictly monotonic decreasing w.r.t. λ for

any k , i. Thus for pk(µ∗ + λ0ei) = pk(µ∗) − δk, we have δk > 0 when k , i and

δi = pi(µ∗) − pi < 0. Now, we have

K∑
k=1

|pk(µ∗ + λ0ei) − pk| = |pi(µ∗ + λ0ei) − pi| +
∑
k,i

|pk(µ∗ + λ0ei) − pk|

=
∑
k,i

(pk − pk(µ∗ + λ0ei)) =
∑
k,i

(pk − pk(µ∗) + δk)

=
∑
k,i

(pk − pk(µ∗)) +
∑
k,i

δk = f (µ∗) − (pi − pi(µ∗)) +
∑
k,i

δk

= f (µ∗) +
∑
k,0

δk

158

Note
∑K

k=0 δk = 0 and δ0 > 0, we know

f (µ∗ + λ0ei) = f (µ∗) − δ0 < f (µ∗),

which contradicts our assumption. The contradiction can also be shown simi-

larly if pk(µ∗) ≥ pk for all k = 1, ..,K.

Now the remaining scenario is that both I and Ic are nonempty, where I =

{i|pi(µ∗) < pi, i ∈ [K]} and Ic = [K] − I. Similarly, we pick a i ∈ I, then there exists

a λ0 > 0 such that pi(µ∗ + λ0ei) = pi, and we define δi same as before. Now

K∑
k=1

|pk(µ∗ + λ0ei) − pk| = |pi(µ∗ + λ0ei) − pi| +
∑
k,i

|pk(µ∗ + λ0ei) − pk|

=
∑

k∈I−{i}

|pk − pk(µ∗) + δk| +
∑
k∈Ic

|pk − pk(µ∗) + δk|

=
∑

k∈I−{i}

(pk − pk(µ∗) + δk) +
∑
k∈Ic

|pk − pk(µ∗) + δk|

≤
∑

k∈I−{i}

(pk − pk(µ∗) + δk) +
∑
k∈Ic

|pk − pk(µ∗)| +
∑
k∈Ic

δk

=
∑

k∈I−{i}

|pk − pk(µ∗)| +
∑
k∈Ic

(pk − pk(µ∗)) +
∑
k,i

δk

=
∑
k,i

|pk − pk(µ∗)| +
∑
k,i

δk

= f (µ∗) − (pi − pi(µ∗)) +
∑
k,i

δk

= f (µ∗) +
∑
k,0

δk

And thus we still have

f (µ∗ + λ0ei) = f (µ∗) − δ0 < f (µ∗),

159

which contradicts our assumption and completes our proof for existence.

Now for uniqueness, assume there exists µ , µ̃ such that P(µ) = P(µ̃). Define

I<, I=, I> to be the set of entries that µ is smaller, equal, and larger than µ̃, respec-

tively. We want to show it muse be the case that both I< and I> are empty, which

contradicts the assumption.

First, if I< is empty but I> is not, then for each i ∈ I>, we define µi ∈ Rk

such that µi agrees with µ at all entries but i and agrees with µ̃ at entry i. Since

pi(µ) is strictly monotonically increasing w.r.t. µi when fixing µ−i, we know

pi(µi) < pi(µ). Further repeatedly switching one more entry of µi in I> from µ

to µ̃ until I> is exhausted, we have pi(µ̃i) < pi(µ), which contradicts the assump-

tion. Similarly we can show the contradiction if I< is not empty but I> is empty.

Now consider the case that both I< and I> are not empty. Define µ∗ such that

µ∗ agrees with µ over I< and agrees with µ̃ over I>. According to above, we know

for each i ∈ I>, pi(µ) > pi(µ∗) > pi(µ̃), which contradicts the assumption. Thus we

complete our proof. □

160

BIBLIOGRAPHY

[1] Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint

detection. arXiv preprint arXiv:0710.3742, 2007.

[2] Samaneh Aminikhanghahi and Diane J Cook. A survey of methods for

time series change point detection. Knowledge and information systems, 51

(2):339–367, 2017.

[3] Clifford Anderson-Bergman, Tamara G Kolda, and Kina Kincher-Winoto.

Xpca: Extending pca for a combination of discrete and continuous vari-

ables. arXiv preprint arXiv:1808.07510, 2018.

[4] Vincent Audigier, François Husson, and Julie Josse. A principal compo-

nent method to impute missing values for mixed data. Advances in Data

Analysis and Classification, 10(1):5–26, 2016.

[5] Vincent Audigier, François Husson, and Julie Josse. Mimca: multiple im-

putation for categorical variables with multiple correspondence analysis.

Statistics and computing, 27(2):501–518, 2017.

[6] Haim Avron, Satyen Kale, Shiva Kasiviswanathan, and Vikas Sindhwani.

Efficient and practical stochastic subgradient descent for nuclear norm

regularization. arXiv preprint arXiv:1206.6384, 2012.

[7] Laura Balzano, Robert Nowak, and Benjamin Recht. Online identifica-

tion and tracking of subspaces from highly incomplete information. In

2010 48th Annual allerton conference on communication, control, and comput-

ing (Allerton), pages 704–711. IEEE, 2010.

[8] James Bergstra and Yoshua Bengio. Random search for hyper-parameter

optimization. Journal of machine learning research, 13(2), 2012.

161

[9] Manjunath BG and Stefan Wilhelm. Moments calculation for the double

truncated multivariate normal density. Available at SSRN 1472153, 2009.

[10] Sonia A Bhaskar. Probabilistic low-rank matrix completion from quan-

tized measurements. The Journal of Machine Learning Research, 17(1):2131–

2164, 2016.

[11] Zdravko I Botev. The normal law under linear restrictions: simulation

and estimation via minimax tilting. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 79(1):125–148, 2017.

[12] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, An-

dreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre

Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly,

Brian Holt, and Gaël Varoquaux. API design for machine learning soft-

ware: experiences from the scikit-learn project. In ECML PKDD Workshop:

Languages for Data Mining and Machine Learning, pages 108–122, 2013.

[13] David S Bunch. Estimability in the multinomial probit model. Transporta-

tion Research Part B: Methodological, 25(1):1–12, 1991.

[14] S van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate impu-

tation by chained equations in r. Journal of statistical software, pages 1–68,

2010.

[15] Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Pro-

ceedings of the IEEE, 98(6):925–936, 2010.

[16] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via

convex optimization. Foundations of Computational mathematics, 9(6):717,

2009.

162

[17] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Yitan Li, and Lei Li. Brits: bidi-

rectional recurrent imputation for time series. In Proceedings of the 32nd In-

ternational Conference on Neural Information Processing Systems, pages 6776–

6786, 2018.

[18] Olivier Cappé and Eric Moulines. On-line expectation–maximization al-

gorithm for latent data models. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 71(3):593–613, 2009.

[19] Alexandra Carpentier, Olga Klopp, and Matthias Löffler. Constructing

confidence sets for the matrix completion problem. In Conference of the

International Society for Non-Parametric Statistics, pages 103–118. Springer,

2016.

[20] Alexandra Carpentier, Olga Klopp, Matthias Löffler, Richard Nickl, et al.

Adaptive confidence sets for matrix completion. Bernoulli, 24(4A):2429–

2460, 2018.

[21] Yuxin Chen, Jianqing Fan, Cong Ma, and Yuling Yan. Inference and un-

certainty quantification for noisy matrix completion. Proceedings of the

National Academy of Sciences, 116(46):22931–22937, 2019.

[22] Benjamin Christoffersen. mdgc: Missing Data Imputation Using Gaussian

Copulas, 2021. URL https://CRAN.R-project.org/package=mdgc.

R package version 0.1.5.

[23] Benjamin Christoffersen, Mark Clements, Keith Humphreys, and Hedvig

Kjellström. Asymptotically exact and fast gaussian copula models for im-

putation of mixed data types. In Asian Conference on Machine Learning,

pages 870–885. PMLR, 2021.

163

https://CRAN.R-project.org/package=mdgc

[24] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and

José Reis. Modeling wine preferences by data mining from physicochem-

ical properties. Decision support systems, 47(4):547–553, 2009.

[25] Ruifei Cui, Ioan Gabriel Bucur, Perry Groot, and Tom Heskes. A novel

bayesian approach for latent variable modeling from mixed data with

missing values. Statistics and Computing, 29(5):977–993, 2019.

[26] Mark A Davenport, Yaniv Plan, Ewout Van Den Berg, and Mary Wootters.

1-bit matrix completion. Information and Inference: A Journal of the IMA, 3

(3):189–223, 2014.

[27] Anthony Christopher Davison and David Victor Hinkley. Bootstrap meth-

ods and their application. Number 1. Cambridge university press, 1997.

[28] Charanpal Dhanjal, Romaric Gaudel, and Stéphan Clémençon. Online

matrix completion through nuclear norm regularisation. In Proceedings

of the 2014 SIAM International Conference on Data Mining, pages 623–631.

SIAM, 2014.

[29] Aryeh Dvoretzky, Jack Kiefer, Jacob Wolfowitz, et al. Asymptotic minimax

character of the sample distribution function and of the classical multino-

mial estimator. The Annals of Mathematical Statistics, 27(3):642–669, 1956.

[30] Jianqing Fan, Han Liu, Yang Ning, and Hui Zou. High dimensional semi-

parametric latent graphical model for mixed data. Journal of the Royal Sta-

tistical Society. Series B: Statistical Methodology, 79(2):405–421, 2017.

[31] Jicong Fan and Madeleine Udell. Online high rank matrix completion. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 8690–8698, 2019.

164

[32] Jicong Fan, Yuqian Zhang, and Madeleine Udell. Polynomial matrix com-

pletion for missing data imputation and transductive learning. In Thirty-

Fourth AAAI Conference on Artificial Intelligence, pages 3842–3849, 2020.

[33] Paul Fearnhead and Zhen Liu. On-line inference for multiple changepoint

problems. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 69(4):589–605, 2007.

[34] Huijie Feng and Yang Ning. High-dimensional mixed graphical model

with ordinal data: Parameter estimation and statistical inference. In The

22nd International Conference on Artificial Intelligence and Statistics, pages

654–663, 2019.

[35] Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt.

Gp-vae: Deep probabilistic time series imputation. In International Confer-

ence on Artificial Intelligence and Statistics, pages 1651–1661. PMLR, 2020.

[36] Ravi Sastry Ganti, Laura Balzano, and Rebecca Willett. Matrix completion

under monotonic single index models. In Advances in Neural Information

Processing Systems, pages 1873–1881, 2015.

[37] Andrew Goldberg, Ben Recht, Junming Xu, Robert Nowak, and Jerry Zhu.

Transduction with matrix completion: Three birds with one stone. In Ad-

vances in neural information processing systems, pages 757–765, 2010.

[38] Suriya Gunasekar, Pradeep Ravikumar, and Joydeep Ghosh. Exponential

family matrix completion under structural constraints. In International

Conference on Machine Learning, pages 1917–1925, 2014.

[39] Jian Guo, Elizaveta Levina, George Michailidis, and Ji Zhu. Graphical

165

models for ordinal data. Journal of Computational and Graphical Statistics,

24(1):183–204, 2015.

[40] F Maxwell Harper and Joseph A Konstan. The movielens datasets: His-

tory and context. Acm transactions on interactive intelligent systems (tiis), 5

(4):1–19, 2015.

[41] F Maxwell Harper and Joseph A Konstan. The movielens datasets: His-

tory and context. Acm transactions on interactive intelligent systems (tiis), 5

(4):19, 2016.

[42] T Hastie and R Mazumder. softimpute: Matrix completion via iterative

soft-thresholded svd. R package version, 1, 2015.

[43] Peter Hoff. sbgcop: Semiparametric Bayesian Gaussian Copula Estimation and

Imputation, 2018. URL https://CRAN.R-project.org/package=

sbgcop. R package version 0.980.

[44] Peter Hoff and Maintainer Peter Hoff. Package ‘sbgcop’. 2018.

[45] Peter D Hoff et al. Extending the rank likelihood for semiparametric cop-

ula estimation. The Annals of Applied Statistics, 1(1):265–283, 2007.

[46] Florian M Hollenbach, Iavor Bojinov, Shahryar Minhas, Nils W Metter-

nich, Michael D Ward, and Alexander Volfovsky. Multiple imputation

using gaussian copulas. Sociological Methods & Research, 50(3):1259–1283,

2021.

[47] Daniel Hsu, Sham Kakade, Tong Zhang, et al. A tail inequality for

quadratic forms of subgaussian random vectors. Electronic Communica-

tions in Probability, 17, 2012.

166

https://CRAN.R-project.org/package=sbgcop
https://CRAN.R-project.org/package=sbgcop

[48] Alexander Ilin and Tapani Raiko. Practical approaches to principal com-

ponent analysis in the presence of missing values. Journal of Machine

Learning Research, 11(Jul):1957–2000, 2010.

[49] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization

with gumbel-softmax. In 5th International Conference on Learning Repre-

sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings. OpenReview.net, 2017.

[50] Adel Javanmard, Andrea Montanari, et al. Online rules for control of false

discovery rate and false discovery exceedance. The Annals of statistics, 46

(2):526–554, 2018.

[51] Julie Josse, Jérôme Pagès, and François Husson. Multiple imputation in

principal component analysis. Advances in data analysis and classification, 5

(3):231–246, 2011.

[52] Julie Josse, François Husson, et al. missmda: a package for handling miss-

ing values in multivariate data analysis. Journal of Statistical Software, 70

(1):1–31, 2016.

[53] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix

completion from noisy entries. Journal of Machine Learning Research, 11

(Jul):2057–2078, 2010.

[54] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114, 2013.

[55] Michael R Kosorok. Introduction to empirical processes and semiparametric

inference. Springer, 2008.

167

[56] Andrew S Lan, Christoph Studer, and Richard G Baraniuk. Matrix re-

covery from quantized and corrupted measurements. In 2014 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, pages 4973–

4977. IEEE, 2014.

[57] Francesca Marta Lilja Di Lascio and Simone Giannerini. CoImp: Copula

Based Imputation Method, 2019. URL https://CRAN.R-project.org/

package=CoImp. R package version 1.0.

[58] Yew Jin Lim and Yee Whye Teh. Variational bayesian approach to movie

rating prediction. In Proceedings of KDD cup and workshop, volume 7, pages

15–21. Citeseer, 2007.

[59] Roderick JA Little and Donald B Rubin. Statistical analysis with missing

data, volume 793. Wiley, 2019.

[60] Han Liu, John Lafferty, and Larry Wasserman. The nonparanormal: Semi-

parametric estimation of high dimensional undirected graphs. Journal of

Machine Learning Research, 10(10), 2009.

[61] Harry M Markowitz. Foundations of portfolio theory. The journal of fi-

nance, 46(2):469–477, 1991.

[62] Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative mod-

elling and imputation of incomplete data sets. In International Conference

on Machine Learning, pages 4413–4423. PMLR, 2019.

[63] David S Matteson and Nicholas A James. A nonparametric approach for

multiple change point analysis of multivariate data. Journal of the American

Statistical Association, 109(505):334–345, 2014.

168

https://CRAN.R-project.org/package=CoImp
https://CRAN.R-project.org/package=CoImp

[64] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regu-

larization algorithms for learning large incomplete matrices. Journal of

machine learning research, 11(Aug):2287–2322, 2010.

[65] Robert McCulloch and Peter E Rossi. An exact likelihood analysis of the

multinomial probit model. Journal of Econometrics, 64(1-2):207–240, 1994.

[66] Geoffrey McLachlan and Thriyambakam Krishnan. The EM algorithm and

extensions, volume 382. John Wiley & Sons, 2007.

[67] Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factoriza-

tion. In Advances in neural information processing systems, pages 1257–1264,

2008.

[68] Jared S Murray, David B Dunson, Lawrence Carin, and Joseph E Lucas.

Bayesian gaussian copula factor models for mixed data. Journal of the

American Statistical Association, 108(502):656–665, 2013.

[69] Bernard V North, David Curtis, and Pak C Sham. A note on the calcu-

lation of empirical p values from monte carlo procedures. The American

Journal of Human Genetics, 71(2):439–441, 2002.

[70] Greg Ongie, Rebecca Willett, Robert D Nowak, and Laura Balzano. Al-

gebraic variety models for high-rank matrix completion. In International

Conference on Machine Learning, pages 2691–2700, 2017.

[71] Andrea Pagotto. ocp: Bayesian Online Changepoint Detection, 2019. URL

https://CRAN.R-project.org/package=ocp. R package version

0.1.1.

169

https://CRAN.R-project.org/package=ocp

[72] Ari Pakman and Liam Paninski. Exact hamiltonian monte carlo for trun-

cated multivariate gaussians. Journal of Computational and Graphical Statis-

tics, 23(2):518–542, 2014.

[73] Weiliang Qiu and Harry Joe. clustergeneration: random cluster genera-

tion (with specified degree of separation). R package version, 1(7):75275–

0122, 2009.

[74] Aaditya Ramdas, Fanny Yang, Martin J Wainwright, and Michael I Jordan.

Online control of the false discovery rate with decaying memory. In Pro-

ceedings of the 31st International Conference on Neural Information Processing

Systems, pages 5655–5664, 2017.

[75] Aaditya Ramdas, Tijana Zrnic, Martin Wainwright, and Michael Jordan.

Saffron: an adaptive algorithm for online control of the false discov-

ery rate. In International conference on machine learning, pages 4286–4294.

PMLR, 2018.

[76] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed

minimum-rank solutions of linear matrix equations via nuclear norm

minimization. SIAM review, 52(3):471–501, 2010.

[77] Jason DM Rennie and Nathan Srebro. Loss functions for preference lev-

els: Regression with discrete ordered labels. In Proceedings of the IJCAI

multidisciplinary workshop on advances in preference handling, pages 180–186.

Kluwer Norwell, MA, 2005.

[78] Jasson DM Rennie and Nathan Srebro. Fast maximum margin matrix fac-

torization for collaborative prediction. In Proceedings of the 22nd interna-

tional conference on Machine learning, pages 713–719, 2005.

170

[79] David S Robertson, Jan Wildenhain, Adel Javanmard, and Natasha A

Karp. onlinefdr: an r package to control the false discovery rate for grow-

ing data repositories. Bioinformatics, 35(20):4196–4199, 2019.

[80] Geneviève Robin, Olga Klopp, Julie Josse, Éric Moulines, and Robert

Tibshirani. Main effects and interactions in mixed and incomplete data

frames. Journal of the American Statistical Association, 115(531):1292–1303,

2020.

[81] Donald B Rubin. Multiple imputation after 18+ years. Journal of the Amer-

ican statistical Association, 91(434):473–489, 1996.

[82] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix

factorization using markov chain monte carlo. In Proceedings of the 25th

international conference on Machine learning, pages 880–887, 2008.

[83] Daniel J Stekhoven. Using the missforest package. R package, pages 1–11,

2011.

[84] Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric

missing value imputation for mixed-type data. Bioinformatics, 28(1):112–

118, 2011.

[85] Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric

missing value imputation for mixed-type data. Bioinformatics, 28(1):112–

118, 2012.

[86] Michael E Tipping and Christopher M Bishop. Probabilistic principal

component analysis. Journal of the Royal Statistical Society: Series B (Sta-

tistical Methodology), 61(3):611–622, 1999.

171

[87] Hideatsu Tsukahara. Semiparametric estimation in copula models. Cana-

dian Journal of Statistics, 33(3):357–375, 2005.

[88] Douglas Turnbull, Luke Barrington, David Torres, and Gert Lanckriet. To-

wards musical query-by-semantic-description using the cal500 data set.

In Proceedings of the 30th annual international ACM SIGIR conference on Re-

search and development in information retrieval, pages 439–446, 2007.

[89] Madeleine Udell and Alex Townsend. Why are big data matrices approx-

imately low rank? SIAM Journal on Mathematics of Data Science, 1(1):144–

160, 2019.

[90] Madeleine Udell and Alex Townsend. Why are big data matrices approx-

imately low rank? SIAM Journal on Mathematics of Data Science (SIMODS),

1(1):144–160, 2019. URL https://epubs.siam.org/doi/pdf/10.

1137/18M1183480.

[91] Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen Boyd, et al. Gen-

eralized low rank models. Foundations and Trends® in Machine Learning, 9

(1):1–118, 2016.

[92] Aad W Vaart and Jon A Wellner. Weak convergence and empirical processes:

with applications to statistics. Springer, 1996.

[93] Stef Van Buuren and Karin Oudshoorn. Flexible multivariate imputation by

MICE. Leiden: TNO, 1999.

[94] Gerrit JJ van den Burg and Christopher KI Williams. An evaluation of

change point detection algorithms. arXiv preprint arXiv:2003.06222, 2020.

[95] Roman Vershynin. Introduction to the non-asymptotic analysis of random

matrices. arXiv preprint arXiv:1011.3027, 2010.

172

https://epubs.siam.org/doi/pdf/10.1137/18M1183480
https://epubs.siam.org/doi/pdf/10.1137/18M1183480

[96] Shuo-Yang Wang, Ju-Chiang Wang, Yi-Hsuan Yang, and Hsin-Min Wang.

Towards time-varying music auto-tagging based on cal500 expansion. In

2014 IEEE International Conference on Multimedia and Expo (ICME), pages

1–6. IEEE, 2014.

[97] Bing Xing, Ning Yang, and Xu Yaosheng. Adaptive estimation of multi-

variate regression with hidden variables. The annals of statistics, 2021.

[98] Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell.

Oboe: Collaborative filtering for automl model selection. In Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pages 1173–1183, 2019.

[99] Grace Yoon, Raymond J Carroll, and Irina Gaynanova. Sparse semipara-

metric canonical correlation analysis for data of mixed types. Biometrika,

107(3):609–625, 2020.

[100] Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data

imputation using generative adversarial nets. In International Conference

on Machine Learning, pages 5689–5698. PMLR, 2018.

[101] Kai Yu, Shenghuo Zhu, John Lafferty, and Yihong Gong. Fast nonpara-

metric matrix factorization for large-scale collaborative filtering. In Pro-

ceedings of the 32nd ACM SIGIR International Conference on Research and De-

velopment in Information Retrieval, pages 211–218, 2009.

[102] Yuxuan Zhao and Madeleine Udell. Matrix completion with quantified

uncertainty through low rank gaussian copula. In Advances in Neural In-

formation Processing Systems, volume 33, 2020.

173

[103] Yuxuan Zhao and Madeleine Udell. Missing value imputation for mixed

data via gaussian copula. In Proceedings of the 26th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data Mining, pages 636–646,

2020.

[104] Yuxuan Zhao and Madeleine Udell. gcimpute: A package for missing

data imputation. arXiv preprint arXiv:2203:05089, 2022.

[105] Yuxuan Zhao, Eric Landgrebe, Eliot Shekhtman, and Madeleine Udell.

Online missing value imputation and change point detection with the

gaussian copula. In Proceedings of the AAAI Conference on Artificial Intel-

ligence, 2022.

174

	Biographical Sketch
	Dedication
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Contribution
	Background
	Missing mechanism
	Notation and evaluation metric

	Imputation via Gaussian copula
	Introduction
	Gaussian Copula model
	Imputation
	Parameter estimation
	Marginal transformation estimation
	Copula correlation estimation
	Approximating truncated normal mean and covariance

	Experiments
	Synthetic data
	General Social Survey (GSS) data
	MovieLens 1M data
	Music Auto-tagging: CAL500exp data
	More ordinal data and dixed data

	Discussion

	Imputation via Low Rank Gaussian Copula
	Introduction
	Low rank Gaussian copula model
	Parameter estimation
	EM algorithm for W and 2

	Imputation error bound
	Experiments
	Synthetic experiments
	Movielens 1M

	Imputation Uncertainty Quantification
	Introduction
	Imputation uncertainty measure
	Experiments
	Synthetic experiments
	MovieLens 1M dataset

	Online Imputation
	Introduction
	Parameter estimation from online data
	Online marginal transformation estimation
	Online copula correlation estimation

	Experiments
	Offline synthetic experiment
	Online synthetic experiment
	Offline real data experiment
	Online real data experiment

	Discussion

	Online Dependence Change Point Detection
	Introduction
	Monte Carlo test for change point detection
	Sequential multiple change points detection
	Experiments
	Discussion

	Extending Gaussian Copula to Handle Categorical Data
	Introduction
	Categorical variables as transformed Gaussian
	Univariate categorical variable
	Multivariate categorical vector
	Mixed data with categorical and ordered variables

	Missing data imputation
	Parameter estimation
	Marginal estimation for categorical variables
	Copula correlation estimation
	Truncated normal with categorical variables

	Software
	Introduction
	Software usage
	Basic usage
	Acceleration for large datasets
	Imputation for streaming datasets
	Imputation uncertainty

	Discussion

	Appendix of Chapter 2
	Truncated normal moments approximations
	Computational details
	Experimental details
	Proof of Lemmas

	Appendix of Chapter 3
	Proofs
	Additional experiments
	LRGC imputation under correct model
	Imputation error versus reliability shape with varying number of ordinal levels

	Experimental details

	Appendix of Chapter 4
	Proofs

	Appendix of Chapter 5
	Proofs
	Additional experiments
	Acceleration of parallelism
	Robustness to varying data dimension, missing ratio and missing mechanism

	Appendix of Chapter 7

